1
|
Ransirini AM, Elżbieta MS, Joanna G, Bartosz K, Wojciech T, Agnieszka B, Magdalena U. Fertilizing drug resistance: Dissemination of antibiotic resistance genes in soil and plant bacteria under bovine and swine slurry fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174476. [PMID: 38969119 DOI: 10.1016/j.scitotenv.2024.174476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The increasing global demand for food production emphasizes the use of organic animal fertilizers, such as manure and slurry, to support sustainable agricultural practices. However, recent studies highlight concerns about antibiotic resistance determinants in animal excrements, posing a potential risk of spreading antibiotic resistance genes (ARGs) in agricultural soil and, consequently, in food products. This study examines the dissemination of ARGs within the soil and plant-associated microbiomes in cherry radish following the application of swine and bovine slurry. In a 45-day pot experiment, slurry-amended soil, rhizospheric bacteria, and endophytic bacteria in radish roots and leaves were sampled and analyzed for 21 ARGs belonging to 7 Antibiotic Resistance Phenotypes (ARPs). The study also assessed slurry's impact on soil microbiome functional diversity, enzymatic activity, physicochemical soil parameters, and the concentration of 22 selected antimicrobials in soil and plant tissues. Tetracyclines and β-lactams were the most frequently identified ARGs in bovine and swine slurry, aligning with similar studies worldwide. Swine slurry showed a higher prevalence of ARGs in soil and plant-associated bacteria, particularly TET genes, reflecting pig antibiotic treatments. The persistent dominance of TET genes across slurry, soil, and plant microbiomes highlights significant influence of slurry application on gene occurrence in plant bacteria. The presence of ARGs in edible plant parts underscores health risks associated with raw vegetable consumption. Time-dependent dynamics of ARG occurrence highlighted their persistent presence throughout the experiment duration, influenced by the environmental factors and antibiotic residuals. Notably, ciprofloxacin, which was the only one antimicrobial detected in fertilized soil, significantly impacted bovine-amended variants. Soil salinity modifications induced by slurry application correlated with changes in ARG occurrence. Overall, the research underscores the complex relationships between agricultural practices, microbial activity, and antibiotic resistance dissemination, emphasizing the need for a more sustainable and health-conscious farming approaches.
Collapse
Affiliation(s)
- Attanayake Mudiyanselage Ransirini
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Mierzejewska-Sinner Elżbieta
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Giebułtowicz Joanna
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Kózka Bartosz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Tołoczko Wojciech
- Department of Physical Geography, Faculty of Geography, University of Lodz, Prez. Gabriela Narutowicza 88, 90-139, Lodz, Poland
| | - Bednarek Agnieszka
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Urbaniak Magdalena
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
2
|
Liu X, An Y, Gao H. Engineering cascade biocatalysis in whole cells for syringic acid bioproduction. Microb Cell Fact 2024; 23:162. [PMID: 38824548 PMCID: PMC11143566 DOI: 10.1186/s12934-024-02441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 μM (26.2 mg/L). CONCLUSION Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Yi An
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Haijun Gao
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
3
|
Zhang X, Geng K, Wu N, Hu G, Fan B, He J, Qiao W. Sustained anaerobic degradation of 4-chloro-2-methylphenoxyacetic acid by acclimated sludge in a continuous-flow reactor. CHEMOSPHERE 2023; 330:138749. [PMID: 37086982 DOI: 10.1016/j.chemosphere.2023.138749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
4-Chloro-2-methylphenoxyacetic acid (MCPA) is a widely used herbicide across the world. MCPA is persistent and easily transports into anoxic environment, such as groundwater, sediments and deep soils. However, little research on anaerobic microbial degradation of MCPA was carried out. The functional microorganisms as well as the catabolic pathway are still unknown. In this research, an anaerobic MCPA-degrading bacterial consortium was enriched from the river sediment near a pesticide-manufacturing plant. After about 6 months' acclimation, the MCPA transformation rate of the consortium reached 4.32 μmol g-1 day-1, 25 times faster than that of the original sludge. 96% of added MCPA (2.5 mM) was degraded within 9 d of incubation. Three metabolites including 4-chloro-2-methylphenol (MCP), 2-methylphenol (2-MP) and phenol were identified during the anaerobic degradation of MCPA. An anaerobic catabolic pathway was firstly proposed: firstly, MCPA was transformed to MCP via the cleavage of the aryl ether, then MCP was reductively dechlorinated to 2-MP which was further demethylated to phenol. The 16S rRNA gene amplicon sequencing revealed a substantial shift in the bacterial community composition after the acclimation. SBR1031, Acidaminococcaceae, Aminicenantales, Syntrophorhabdus, Acidaminobacter, Bacteroidetes_vadinHA17, Methanosaeta, Bathyarchaeia, KD4-96, Anaeromyxobacter, and Dehalobacter were significantly increased in the enriched consortium after acclimation, and positively correlated with the anaerobic degradation of MCPA as suggested by heat map correlation analysis. This study provides a basis for further elucidation of the anaerobic catabolism of MCPA, and contributes to developing efficient and low-cost anaerobic treatment technologies for MCPA pollution.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Keke Geng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Ningning Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Gang Hu
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Ben Fan
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Jian He
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
4
|
Mierzejewska E, Tołoczko W, Urbaniak M. Behind the plant-bacteria system: The role of zucchini and its secondary metabolite in shaping functional microbial diversity in MCPA-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161312. [PMID: 36603641 DOI: 10.1016/j.scitotenv.2022.161312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
MCPA (2-methyl-4-chlorophenoxyacetic acid) contamination is an emerging problem, especially in water reservoirs. The early removal of MCPA residues from soil can prevent its spread to untreated areas. It has been found that the growth of cucurbits and the addition of selected plant secondary metabolites (PSMs) can stimulate MCPA removal from soil. However, the effect of these treatments on soil microbial activity remains poorly studied. Hence, the aim of this research was to evaluate the influence of zucchini (C. pepo cv Atena Polka) and its characteristic PSM: syringic acid (SA) on the functional diversity of soil microorganisms in MCPA-contaminated soil using Biolog® EcoPlates™. It also examines soil physicochemical properties and the growth parameters of zucchini. Microbial activity was enhanced by both zucchini cultivation and SA. All unplanted variants showed significantly lower microbial activity (average well color development, AWCD, ranging from 0.35 to 0.51) than the planted ones (AWCD ranging from 0.77 to 1.16). SA also stimulated microbial activity in the soil: a positive effect was observed from the beginning of the experiment in the unplanted variants, but over a longer time span in the planted variants. SA ameliorated the toxic effect of MCPA on the studied plants, especially in terms of photosynthetic pigment production: the MCPA+SA group demonstrated significantly increased chlorophyll content (401 ± 4.83 μg/g), compared to the MCPA group without SA (338 ± 50.1 μg/g). Our findings demonstrated that zucchini and the amendment of soils with SA, the characteristic PSM of cucurbits, can shape functional diversity in MCPA-contaminated soil. The changes of soil properties caused by the application of both compounds can trigger changes in functional diversity. Hence, both SA and MCPA exert indirect and direct effects on soil microbial activity.
Collapse
Affiliation(s)
- Elżbieta Mierzejewska
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Wojciech Tołoczko
- Department of Physical Geography, Faculty of Geography, University of Lodz, Prez. Gabriela Narutowicz 88, 90-139 Lodz, Poland
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technicka 3, 166 28 Prague, Czech Republic
| |
Collapse
|