1
|
Melchior PP, Reiss E, Payne Z, Vuong N, Hovorka K, Lindsay HL, Diaz GR, Gaire T, Noyes N. Analysis of the northern pitcher plant (Sarracenia purpurea L.) phytotelm bacteriome throughout a temperate region growing season. PLoS One 2024; 19:e0306602. [PMID: 38995889 PMCID: PMC11244801 DOI: 10.1371/journal.pone.0306602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The insectivorous Northern Pitcher Plant, Sarracenia purpurea, recruits a dynamic biotic community in the rainwater collected by its pitcher-shaped leaves. Insect capture and degradation within the pitcher fluid (phytotelma) has been well documented as a mechanism for supplementing the plant's nitrogen, phosphorous, and micronutrient requirements. Metagenomic studies have shown a diverse microbiome in this phytotelm environment, including taxa that contribute metabolically to prey digestion. In this investigation, we used high-throughput 16S rDNA sequencing and bioinformatics to analyze the S. purpurea phytotelm bacteriome as it changes through the growing season (May-September) in plants from the north-central region of the species' native range. Additionally, we used molecular techniques to detect and quantify bacterial nitrogenase genes (nifH) in all phytotelm samples to explore the hypothesis that diazotrophy is an additional mechanism of supplying biologically available nitrogen to S. purpurea. The results of this study indicate that while prokaryote diversity remains relatively stable in plants at different locations within our region, diversity changes significantly as the growing season progresses. Furthermore, nifH genes were detected at biologically significant concentrations in one hundred percent of samples, suggesting that nitrogen fixation may be an important contributor to the S. purpurea nutrient budget.
Collapse
Affiliation(s)
- Paul P. Melchior
- Department of Biology, North Hennepin Community College, Brooklyn Park, Minnesota, United States of America
- Department of Biology, Bemidji State University, Bemidji, Minnesota, United States of America
- Department of Marine Science, Atlantic Technological University, Galway, Republic of Ireland
- Department of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Emma Reiss
- Department of Biology, North Hennepin Community College, Brooklyn Park, Minnesota, United States of America
- Department of Biology, Bemidji State University, Bemidji, Minnesota, United States of America
| | - Zachary Payne
- Department of Biology, North Hennepin Community College, Brooklyn Park, Minnesota, United States of America
- Department of Biology, Bemidji State University, Bemidji, Minnesota, United States of America
| | - Nhi Vuong
- Department of Biology, North Hennepin Community College, Brooklyn Park, Minnesota, United States of America
- Department of Biology, Bemidji State University, Bemidji, Minnesota, United States of America
| | - Kari Hovorka
- Department of Biology, North Hennepin Community College, Brooklyn Park, Minnesota, United States of America
- Department of Biology, Bemidji State University, Bemidji, Minnesota, United States of America
| | - Hunter L. Lindsay
- Department of Biology, North Hennepin Community College, Brooklyn Park, Minnesota, United States of America
- Department of Biology, Bemidji State University, Bemidji, Minnesota, United States of America
| | - Gerardo R. Diaz
- Department of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Tara Gaire
- Department of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Noelle Noyes
- Department of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
2
|
Bittleston LS, Wolock CJ, Maeda J, Infante V, Ané JM, Pierce NE, Pringle A. Carnivorous Nepenthes Pitchers with Less Acidic Fluid House Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0081223. [PMID: 37338413 PMCID: PMC10370301 DOI: 10.1128/aem.00812-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Carnivorous pitcher plants are uniquely adapted to nitrogen limitation, using pitfall traps to acquire nutrients from insect prey. Pitcher plants in the genus Sarracenia may also use nitrogen fixed by bacteria inhabiting the aquatic microcosms of their pitchers. Here, we investigated whether species of a convergently evolved pitcher plant genus, Nepenthes, might also use bacterial nitrogen fixation as an alternative strategy for nitrogen capture. First, we constructed predicted metagenomes of pitcher organisms from three species of Singaporean Nepenthes using 16S rRNA sequence data and correlated predicted nifH abundances with metadata. Second, we used gene-specific primers to amplify and quantify the presence or absence of nifH directly from 102 environmental samples and identified potential diazotrophs with significant differential abundance in samples that also had positive nifH PCR tests. Third, we analyzed nifH in eight shotgun metagenomes from four additional Bornean Nepenthes species. Finally, we conducted an acetylene reduction assay using greenhouse-grown Nepenthes pitcher fluids to confirm nitrogen fixation is indeed possible within the pitcher habitat. Results show active acetylene reduction can occur in Nepenthes pitcher fluid. Variation in nifH from wild samples correlates with Nepenthes host species identity and pitcher fluid acidity. Nitrogen-fixing bacteria are associated with more neutral fluid pH, while endogenous Nepenthes digestive enzymes are most active at low fluid pH. We hypothesize Nepenthes species experience a trade-off in nitrogen acquisition; when fluids are acidic, nitrogen is primarily acquired via plant enzymatic degradation of insects, but when fluids are neutral, Nepenthes plants take up more nitrogen via bacterial nitrogen fixation. IMPORTANCE Plants use different strategies to obtain the nutrients that they need to grow. Some plants access their nitrogen directly from the soil, while others rely on microbes to access the nitrogen for them. Carnivorous pitcher plants generally trap and digest insect prey, using plant-derived enzymes to break down insect proteins and generate a large portion of the nitrogen that they subsequently absorb. In this study, we present results suggesting that bacteria living in the fluids formed by Nepenthes pitcher plants can fix nitrogen directly from the atmosphere, providing an alternative pathway for plants to access nitrogen. These nitrogen-fixing bacteria are only likely to be present when pitcher plant fluids are not strongly acidic. Interestingly, the plant's enzymes are known to be more active under strongly acidic conditions. We propose a potential trade-off where pitcher plants sometimes access nitrogen using their own enzymes to digest prey and at other times take advantage of bacterial nitrogen fixation.
Collapse
Affiliation(s)
- Leonora S. Bittleston
- Department of Biological Sciences, Boise State University, Boise, Idaho, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Charles J. Wolock
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Agronomy, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Anne Pringle
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Li M, Lei T, Wang G, Zhang D, Liu H, Zhang Z. Monitoring insect biodiversity and comparison of sampling strategies using metabarcoding: A case study in the Yanshan Mountains, China. Ecol Evol 2023; 13:e10031. [PMID: 37091562 PMCID: PMC10121320 DOI: 10.1002/ece3.10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Insects are the richest and most diverse group of animals and yet there remains a lack, not only of systematic research into their distribution across some key regions of the planet, but of standardized sampling strategies for their study. The Yanshan Mountains, being the boundary range between the Inner Mongolian Plateau and the North China Plain, present an indispensable piece of the insect biodiversity puzzle: both requiring systematic study and offering opportunities for the development of standardized methodologies. This is the first use of DNA metabarcoding to survey the insect biodiversity of the Yanshan Mountains. The study focuses on differences of community composition among samples collected via different methods and from different habitat types. In total, 74 bulk samples were collected from five habitat types (scrubland, woodland, wetland, farmland and grassland) using three collection methods (sweep netting, Malaise traps and light traps). After DNA extraction, PCR amplification, sequencing and diversity analysis were performed, a total of 7427 Operational Taxonomic Units (OTUs) at ≥97% sequence similarity level were delimited, of which 7083 OTUs were identified as belonging to Insecta. Orthoptera, Diptera, Coleoptera and Hemiptera were found to be the dominant orders according to community composition analysis. Nonmetric multidimensional scaling (NMDS) analysis based on Bray-Curtis distances revealed highly divergent estimates of insect community composition among samples differentiated by the collection method (R = .524802, p = .001), but nonsignificant difference among samples differentiated according to habitat (R = .051102, p = .078). The study therefore appears to indicate that the concurrent use of varied collection methods is essential to the accurate monitoring of insect biodiversity.
Collapse
Affiliation(s)
- Min Li
- College of Biological Science and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Ting Lei
- College of Biological Science and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Guobin Wang
- College of Biological Science and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Danli Zhang
- College of Biological Science and TechnologyTaiyuan Normal UniversityJinzhongChina
| | - Huaxi Liu
- Department of Life SciencesNatural History MuseumLondonUK
| | - Zhiwei Zhang
- College of Forestry, Shanxi Agricultural UniversityJinzhongChina
| |
Collapse
|
4
|
Baharin A, Ting TY, Goh HH. Omics Approaches in Uncovering Molecular Evolution and Physiology of Botanical Carnivory. PLANTS (BASEL, SWITZERLAND) 2023; 12:408. [PMID: 36679121 PMCID: PMC9867145 DOI: 10.3390/plants12020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Systems biology has been increasingly applied with multiple omics for a holistic comprehension of complex biological systems beyond the reductionist approach that focuses on individual molecules. Different high-throughput omics approaches, including genomics, transcriptomics, metagenomics, proteomics, and metabolomics have been implemented to study the molecular mechanisms of botanical carnivory. This covers almost all orders of carnivorous plants, namely Caryophyllales, Ericales, Lamiales, and Oxalidales, except Poales. Studies using single-omics or integrated multi-omics elucidate the compositional changes in nucleic acids, proteins, and metabolites. The omics studies on carnivorous plants have led to insights into the carnivory origin and evolution, such as prey capture and digestion as well as the physiological adaptations of trap organ formation. Our understandings of botanical carnivory are further enhanced by the discoveries of digestive enzymes and transporter proteins that aid in efficient nutrient sequestration alongside dynamic molecular responses to prey. Metagenomics studies revealed the mutualistic relationships between microbes and carnivorous plants. Lastly, in silico analysis accelerated the functional characterization of new molecules from carnivorous plants. These studies have provided invaluable molecular data for systems understanding of carnivorous plants. More studies are needed to cover the diverse species with convergent evolution of botanical carnivory.
Collapse
|