1
|
Wang C, Yang J, Pan Q, Zhu P, Li J. Integrated transcriptomic and proteomic analysis of exogenous abscisic acid regulation on tuberous root development in Pseudostellaria heterophylla. Front Nutr 2024; 11:1417526. [PMID: 39036490 PMCID: PMC11258014 DOI: 10.3389/fnut.2024.1417526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.
Collapse
Affiliation(s)
| | | | | | - Panpan Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
2
|
Guo D, Chen L, Liu S, Jiang W, Ye Q, Wu Z, Wang X, Hu X, Zhang Z, He H, Hu L. Curling Leaf 1, Encoding a MYB-Domain Protein, Regulates Leaf Morphology and Affects Plant Yield in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3127. [PMID: 37687373 PMCID: PMC10490398 DOI: 10.3390/plants12173127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The leaf is the main site of photosynthesis and is an important component in shaping the ideal rice plant architecture. Research on leaf morphology and development will lay the foundation for high-yield rice breeding. In this study, we isolated and identified a novel curling leaf mutant, designated curling leaf 1 (cl1). The cl1 mutant exhibited an inward curling phenotype because of the defective development of sclerenchymatous cells on the abaxial side. Meanwhile, the cl1 mutant showed significant reductions in grain yield and thousand-grain weight due to abnormal leaf development. Through map-based cloning, we identified the CL1 gene, which encodes a MYB transcription factor that is highly expressed in leaves. Subcellular localization studies confirmed its typical nuclear localization. Transcriptome analysis revealed a significant differential expression of the genes involved in photosynthesis, leaf morphology, yield formation, and hormone metabolism in the cl1 mutant. Yeast two-hybrid assays demonstrated that CL1 interacts with alpha-tubulin protein SRS5 and AP2/ERF protein MFS. These findings provide theoretical foundations for further elucidating the mechanisms of CL1 in regulating leaf morphology and offer genetic resources for practical applications in high-yield rice breeding.
Collapse
Affiliation(s)
- Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lianghai Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenxiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zheng Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiaoqing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiafei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zelin Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lifang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
| |
Collapse
|
3
|
Tang Y, Lu L, Sheng Z, Zhao D, Tao J. An R2R3-MYB network modulates stem strength by regulating lignin biosynthesis and secondary cell wall thickening in herbaceous peony. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1237-1258. [PMID: 36633057 DOI: 10.1111/tpj.16107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Stem strength is an important agronomic trait affecting plant lodging, and plays an essential role in the quality and yield of plants. Thickened secondary cell walls in stems provide mechanical strength that allows plants to stand upright, but the regulatory mechanism of secondary cell wall thickening and stem strength in cut flowers remains unclear. In this study, first, a total of 11 non-redundant Paeonia lactiflora R2R3-MYBs related to stem strength were identified and isolated from cut-flower herbaceous peony, among which PlMYB43, PlMYB83 and PlMYB103 were the most upregulated differentially expressed genes. Then, the expression characteristics revealed that these three R2R3-MYBs were specifically expressed in stems and acted as transcriptional activators. Next, biological function verification showed that these P. lactiflora R2R3-MYBs positively regulated stem strength, secondary cell wall thickness and lignin deposition. Furthermore, yeast-one-hybrid and dual luciferase reporter assays demonstrated that they could bind to the promoter of caffeic acid O-methyltransferase gene (PlCOMT2) and/or laccase gene (PlLAC4), two key genes involved in lignin biosynthesis. In addition, the function of PlLAC4 in increasing lignin deposition was confirmed by virus-induced gene silencing and overexpression. Moreover, PlMYB83 could also act as a transcriptional activator of PlMYB43. The findings of the study propose a regulatory network of R2R3-MYBs modulating lignin biosynthesis and secondary cell wall thickening for improving stem lodging resistance, and provide a resource for molecular genetic engineering breeding of cut flowers.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhipeng Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Tang Y, Lu L, Huang X, Zhao D, Tao J. The herbaceous peony transcription factor WRKY41a promotes secondary cell wall thickening to enhance stem strength. PLANT PHYSIOLOGY 2023; 191:428-445. [PMID: 36305685 PMCID: PMC9806655 DOI: 10.1093/plphys/kiac507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Stem bending or lodging caused by insufficient stem strength is an important limiting factor for plant production. Secondary cell walls play a crucial role in plant stem strength, but whether WRKY transcription factors can positively modulate secondary cell wall thickness are remain unknown. Here, we characterized a WRKY transcription factor PlWRKY41a from herbaceous peony (Paeonia lactiflora), which was highly expressed in stems. PlWRKY41a functioned as a nucleus-localized transcriptional activator and enhanced stem strength by positively modulating secondary cell wall thickness. Moreover, PlWRKY41a bound to the promoter of the XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE4 (PlXTH4) and activated the expression of PlXTH4. PlXTH4-overexpressing tobacco (Nicotiana tabacum) had thicker secondary cell walls, resulting in enhanced stem strength, while PlXTH4-silenced P. lactiflora had thinner secondary cell walls, showing decreased stem strength. Additionally, PlWRKY41a directly interacted with PlMYB43 to form a protein complex, and their interaction induced the expression of PlXTH4. These data support that the PlMYB43-PlWRKY41a protein complex can directly activate the expression of PlXTH4 to enhance stem strength by modulating secondary cell wall thickness in P. lactiflora. The results will enhance our understanding of the formation mechanism of stem strength and provide a candidate gene to improve stem straightness in plants.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Xingqi Huang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
5
|
Li J, Jia X, Yang Y, Chen Y, Wang L, Liu L, Li M. Genome-Wide Identification of the DOF Gene Family Involved in Fruitlet Abscission in Areca catechu L. Int J Mol Sci 2022; 23:ijms231911768. [PMID: 36233072 PMCID: PMC9569674 DOI: 10.3390/ijms231911768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Fruitlet abscission frequently occurs in Areca catechu L. and causes considerable production loss. However, the inducement mechanism of fruitlet abscission remains mysterious. In this study, we observed that the cell architecture in the abscission zone (AZ) was distinct with surrounding tissues, and varied obviously before and after abscission. Transcriptome analysis of the “about-to-abscise” and “non-abscised” AZs were performed in A. catechu, and the genes encoding the plant-specific DOF (DNA-binding with one finger) transcription factors showed a uniform up-regulation in AZ, suggesting a role of the DOF transcription in A. catechu fruitlet abscission. In total, 36 members of the DOF gene family distributed in 13 chromosomes were identified from the A. catechu genome. The 36 AcDOF genes were classified into nine subgroups based on phylogenic analysis. Six of them showed an AZ-specific expression pattern, and their expression levels varied according to the abscission process. In total, nine types of phytohormone response cis-elements and five types of abiotic stress related cis-elements were identified in the promoter regions of the AcDOF genes. In addition, histochemical staining showed that lignin accumulation of vascular bundles in AZ was significantly lower than that in pedicel and mesocarp, indicating the specific characteristics of the cell architecture in AZ. Our data suggests that the DOF transcription factors might play a role in fruitlet abscission regulation in A. catechu.
Collapse
Affiliation(s)
- Jia Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaocheng Jia
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yunche Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Linkai Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Liyun Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Meng Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-13319516033
| |
Collapse
|
6
|
Wang K, Zhang N, Fu X, Zhang H, Liu S, Pu X, Wang X, Si H. StTCP15 regulates potato tuber sprouting by modulating the dynamic balance between abscisic acid and gibberellic acid. FRONTIERS IN PLANT SCIENCE 2022; 13:1009552. [PMID: 36186016 PMCID: PMC9523429 DOI: 10.3389/fpls.2022.1009552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The major stages of the potato life cycle are tuber dormancy and sprouting, however, there is still known very little of the mechanisms that control these processes. TCP (Theosinte branch I, Cycloidea, proliferationcell factors 1 and 2) transcription factors play a key role in plant growth and dormancy related developmental processes. Previous researches demonstrated that TCP transcription factor StTCP15 had a function in the promotion of dormancy. To elucidate the function of StTCP15 gene, it was cloned from potato cultivar "Desiree," which encodes a polypeptide consisting of 414 amino acids and is mainly found in the nucleus. The potato tubers of StTCP15 overexpression lines sprouted in advance, while the potato tubers of StTCP15 down-regulated expression lines showed delayed sprouting. In addition, it was also found that overexpression lines of StTCP15 extremely significantly reduced the ratio of abscisic acid (ABA)/gibberellic acid (GA3), while the superoxide dismutase activity decreased, and the activity of peroxidase and catalase increased compared with the wild type. The opposite result was found in the down-regulated expression lines of StTCP15 gene. Three interacting proteins, StSnRK1, StF-Box and StGID1, were screened by Yeast two-hybrid, and verified by Bimolecular Fluorescence Complementation and Split-luciferase, indicating that StTCP15 could affect ABA and GA3 signaling pathways to regulate potato tuber dormancy and sprouting. Together, these results demonstrated that StTCP15 regulated potato tuber dormancy and sprouting by affecting the dynamic balance between ABA and GA3. The result could provide some information on the molecular mechanism of StTCP15 regulating potato tuber dormancy and sprouting.
Collapse
Affiliation(s)
- Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Shengyan Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xue Pu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiao Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Yang X, Wang J, Mao X, Li C, Li L, Xue Y, He L, Jing R. A Locus Controlling Leaf Rolling Degree in Wheat under Drought Stress Identified by Bulked Segregant Analysis. PLANTS 2022; 11:plants11162076. [PMID: 36015380 PMCID: PMC9414355 DOI: 10.3390/plants11162076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Drought stress frequently occurs, which seriously restricts the production of wheat (Triticum aestivum L.). Leaf rolling is a typical physiological phenomenon of plants during drought stress. To understand the genetic mechanism of wheat leaf rolling, we constructed an F2 segregating population by crossing the slight-rolling wheat cultivar “Aikang 58” (AK58) with the serious-rolling wheat cultivar ″Zhongmai 36″ (ZM36). A combination of bulked segregant analysis (BSA) with Wheat 660K SNP Array was used to identify molecular markers linked to leaf rolling degree. A major locus for leaf rolling degree under drought stress was detected on chromosome 7A. We named this locus LEAF ROLLING DEGREE 1 (LERD1), which was ultimately mapped to a region between 717.82 and 720.18 Mb. Twenty-one genes were predicted in this region, among which the basic helix-loop-helix (bHLH) transcription factor TraesCS7A01G543300 was considered to be the most likely candidate gene for LERD1. The TraesCS7A01G543300 is highly homologous to the Arabidopsis ICE1 family proteins ICE/SCREAM, SCREAM2 and bHLH093, which control stomatal initiation and development. Two nucleotide variation sites were detected in the promoter region of TraesCS7A01G543300 between the two wheat cultivars. Gene expression assays indicated that TraesCS7A01G543300 was higher expressed in AK58 seedlings than that of ZM36. This research discovered a candidate gene related to wheat leaf rolling under drought stress, which may be helpful for understanding the leaf rolling mechanism and molecular breeding in wheat.
Collapse
Affiliation(s)
- Xi Yang
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinghong Xue
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liheng He
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (L.H.); (R.J.)
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (L.H.); (R.J.)
| |
Collapse
|