1
|
Wegner L, Ehlers K. Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function. PLANTA 2024; 260:45. [PMID: 38965075 PMCID: PMC11224097 DOI: 10.1007/s00425-024-04476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
MAIN CONCLUSION Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
2
|
Koga H, Ikematsu S, Kimura S. Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:579-604. [PMID: 38424069 DOI: 10.1146/annurev-arplant-062923-024919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Amphibious plants can grow and survive in both aquatic and terrestrial environments. This review explores the diverse adaptations that enable them to thrive in such contrasting habitats. Plants with amphibious lifestyles possess fascinating traits, and their phenotypic plasticity plays an important role in adaptations. Heterophylly, the ability to produce different leaf forms, is one such trait, with submerged leaves generally being longer, narrower, and thinner than aerial leaves. In addition to drastic changes in leaf contours, amphibious plants display significant anatomical and physiological changes, including a reduction in stomatal number and cuticle thickness and changes in photosynthesis mode. This review summarizes and compares the regulatory mechanisms and evolutionary origins of amphibious plants based on molecular biology studies actively conducted in recent years using novel model amphibious plant species. Studying amphibious plants will enhance our understanding of plant adaptations to aquatic environments.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Shuka Ikematsu
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan;
| | - Seisuke Kimura
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan;
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-Ku, Kyoto, Japan
| |
Collapse
|
3
|
Maździarz M, Krawczyk K, Kurzyński M, Paukszto Ł, Szablińska-Piernik J, Szczecińska M, Sulima P, Sawicki J. Epitranscriptome insights into Riccia fluitans L. (Marchantiophyta) aquatic transition using nanopore direct RNA sequencing. BMC PLANT BIOLOGY 2024; 24:399. [PMID: 38745128 PMCID: PMC11094948 DOI: 10.1186/s12870-024-05114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Riccia fluitans, an amphibious liverwort, exhibits a fascinating adaptation mechanism to transition between terrestrial and aquatic environments. Utilizing nanopore direct RNA sequencing, we try to capture the complex epitranscriptomic changes undergone in response to land-water transition. RESULTS A significant finding is the identification of 45 differentially expressed genes (DEGs), with a split of 33 downregulated in terrestrial forms and 12 upregulated in aquatic forms, indicating a robust transcriptional response to environmental changes. Analysis of N6-methyladenosine (m6A) modifications revealed 173 m6A sites in aquatic and only 27 sites in the terrestrial forms, indicating a significant increase in methylation in the former, which could facilitate rapid adaptation to changing environments. The aquatic form showed a global elongation bias in poly(A) tails, which is associated with increased mRNA stability and efficient translation, enhancing the plant's resilience to water stress. Significant differences in polyadenylation signals were observed between the two forms, with nine transcripts showing notable changes in tail length, suggesting an adaptive mechanism to modulate mRNA stability and translational efficiency in response to environmental conditions. This differential methylation and polyadenylation underline a sophisticated layer of post-transcriptional regulation, enabling Riccia fluitans to fine-tune gene expression in response to its living conditions. CONCLUSIONS These insights into transcriptome dynamics offer a deeper understanding of plant adaptation strategies at the molecular level, contributing to the broader knowledge of plant biology and evolution. These findings underscore the sophisticated post-transcriptional regulatory strategies Riccia fluitans employs to navigate the challenges of aquatic versus terrestrial living, highlighting the plant's dynamic adaptation to environmental stresses and its utility as a model for studying adaptation mechanisms in amphibious plants.
Collapse
Affiliation(s)
- Mateusz Maździarz
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, Olsztyn, 10-719, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, Olsztyn, 10-719, Poland
| | - Mateusz Kurzyński
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, Olsztyn, 10-719, Poland
| | - Łukasz Paukszto
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, Olsztyn, 10-719, Poland
| | - Joanna Szablińska-Piernik
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, Olsztyn, 10-719, Poland
| | - Monika Szczecińska
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, Olsztyn, 10-719, Poland
| | - Paweł Sulima
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, Olsztyn, 10-724, Poland
| | - Jakub Sawicki
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, Olsztyn, 10-719, Poland.
| |
Collapse
|
4
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
5
|
Hildebrandt M, Bleile IE, Althoff F, Zachgo S, Bräutigam A, Verwaaijen B. Whole-Genome Sequence of Aneurinibacillus sp. Ricciae_BoGa-3, Isolated from Riccia fluitans. Microbiol Resour Announc 2023:e0008123. [PMID: 37140465 DOI: 10.1128/mra.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Here, we present the Nanopore-only genome sequence of Aneurinibacillus sp. Ricciae_BoGa-3. It was isolated from Riccia fluitans ecotype BoGa-3 and its source was Botanical Garden Osnabrück (Germany). The complete circular genome is 4,981,254 bp with a GC content of 44.8%.
Collapse
Affiliation(s)
- Marvin Hildebrandt
- Bielefeld University, Computational Biology, Faculty of Biology, Bielefeld, Germany
| | - Isabell E Bleile
- Bielefeld University, Computational Biology, Faculty of Biology, Bielefeld, Germany
| | - Felix Althoff
- Osnabrück University, Department of Botany, Osnabrück, Germany
| | - Sabine Zachgo
- Osnabrück University, Department of Botany, Osnabrück, Germany
| | - Andrea Bräutigam
- Bielefeld University, Computational Biology, Faculty of Biology, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Bart Verwaaijen
- Bielefeld University, Computational Biology, Faculty of Biology, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
- Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
6
|
Zachgo S. Nuclear redox processes in land plant development and stress adaptation. Biol Chem 2023; 404:379-384. [PMID: 36853884 DOI: 10.1515/hsz-2022-0288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Recent findings expanded our knowledge about plant redox regulation in stress responses by demonstrating that redox processes exert crucial nuclear regulatory functions in meristems and other developmental processes. Analyses of redox-modulated transcription factor functions and coregulatory ROXYs, CC-type land-plant specific glutaredoxins, reveal new insights into the redox control of plant transcription factors and participation of ROXYs in plant development. The role for ROS and redox signaling in response to low-oxygen conditions further strengthens the importance of redox processes in meristems and tissue differentiation as well as for adaptation to changing environments effecting food crop productivity.
Collapse
Affiliation(s)
- Sabine Zachgo
- Division of Botany, School of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, D-49076 Osnabrück, Germany
| |
Collapse
|