1
|
Imaduwage I, Hewadikaram M. Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. MOLECULAR HORTICULTURE 2024; 4:20. [PMID: 38745264 PMCID: PMC11094901 DOI: 10.1186/s43897-024-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/06/2024] [Indexed: 05/16/2024]
Abstract
The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exogenous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model plants, this review provides a comprehensive overview of the current understanding of this function in horticultural crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.
Collapse
Affiliation(s)
- Iuh Imaduwage
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka
| | - Madhavi Hewadikaram
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka.
| |
Collapse
|
2
|
Lyu K, Xiao J, Lyu S, Liu R. Comparative Analysis of Transposable Elements in Strawberry Genomes of Different Ploidy Levels. Int J Mol Sci 2023; 24:16935. [PMID: 38069258 PMCID: PMC10706760 DOI: 10.3390/ijms242316935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Transposable elements (TEs) make up a large portion of plant genomes and play a vital role in genome structure, function, and evolution. Cultivated strawberry (Fragaria x ananassa) is one of the most important fruit crops, and its octoploid genome was formed through several rounds of genome duplications from diploid ancestors. Here, we built a pan-genome TE library for the Fragaria genus using ten published strawberry genomes at different ploidy levels, including seven diploids, one tetraploid, and two octoploids, and performed comparative analysis of TE content in these genomes. The TEs comprise 51.83% (F. viridis) to 60.07% (F. nilgerrensis) of the genomes. Long terminal repeat retrotransposons (LTR-RTs) are the predominant TE type in the Fragaria genomes (20.16% to 34.94%), particularly in F. iinumae (34.94%). Estimating TE content and LTR-RT insertion times revealed that species-specific TEs have shaped each strawberry genome. Additionally, the copy number of different LTR-RT families inserted in the last one million years reflects the genetic distance between Fragaria species. Comparing cultivated strawberry subgenomes to extant diploid ancestors showed that F. vesca and F. iinumae are likely the diploid ancestors of the cultivated strawberry, but not F. viridis. These findings provide new insights into the TE variations in the strawberry genomes and their roles in strawberry genome evolution.
Collapse
Affiliation(s)
- Keliang Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.L.); (S.L.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jiajing Xiao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shiheng Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.L.); (S.L.)
| | - Renyi Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
3
|
Liu Y, Gao Y, Chen M, Jin Y, Qin Y, Hao G. GIFTdb: a useful gene database for plant fruit traits improving. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1030-1040. [PMID: 37856620 DOI: 10.1111/tpj.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Fruit traits are critical determinants of plant fitness, resource diversity, productive and quality. Gene regulatory networks in plants play an essential role in determining fruit traits, such as fruit size, yield, firmness, aroma and other important features. Many research studies have focused on elucidating the associated signaling pathways and gene interaction mechanism to better utilize gene resources for regulating fruit traits. However, the availability of specific database of genes related to fruit traits for use by the plant research community remains limited. To address this limitation, we developed the Gene Improvements for Fruit Trait Database (GIFTdb, http://giftdb.agroda.cn). GIFTdb contains 35 365 genes, including 896 derived from the FR database 1.0, 305 derived from 30 882 articles from 2014 to 2021, 236 derived from the Universal Protein Resource (UniProt) database, and 33 928 identified through homology analysis. The database supports several aided analysis tools, including signal transduction pathways, gene ontology terms, protein-protein interactions, DNAWorks, Basic Local Alignment Search Tool (BLAST), and Protein Subcellular Localization Prediction (WoLF PSORT). To provide information about genes currently unsupported in GIFTdb, potential fruit trait-related genes can be searched based on homology with the supported genes. GIFTdb can provide valuable assistance in determining the function of fruit trait-related genes, such as MYB306-like, by conducting a straightforward search. We believe that GIFTdb will be a valuable resource for researchers working on gene function annotation and molecular breeding to improve fruit traits.
Collapse
Affiliation(s)
- Yingwei Liu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, P.R. China
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yin Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| | - Yongbin Qin
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
| | - Gefei Hao
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, 550025, Guiyang, P.R. China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, 550025, Guiyang, P.R. China
| |
Collapse
|
4
|
Wang C, Pan G, Lu X, Qi W. Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering. Front Bioeng Biotechnol 2023; 11:1181078. [PMID: 37251561 PMCID: PMC10213388 DOI: 10.3389/fbioe.2023.1181078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Phosphate solubilizing microorganisms (PSMs) are known as bacteria or fungi that make insoluble phosphorus in soil available to plants. To date, as beneficial microbes, studies on PSMs indicated they have potential applications in agriculture, environmental engineering, bioremediation, and biotechnology. Currently high cost and competition from local microbe are the most important factors hindering PSMs commercialization and application as for instance biofertilizer, soil conditioner or remediation agent, etc. There are several technical strategies can be engaged to approach the solutions of these issues, for instance mass production, advance soil preparation, genetic engineering, etc. On the other hand, further studies are needed to improve the efficiency and effectiveness of PSMs in solubilizing phosphates, promoting plant growth, soil remediation preferably. Hopefully, PSMs are going to be developed into ecofriendly tools for sustainable agriculture, environment protection and management in the future.
Collapse
Affiliation(s)
- Chengdong Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guojun Pan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Lu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Weicong Qi
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|