1
|
Pei Z, Huang Y, Ni J, Liu Y, Yang Q. For a Colorful Life: Recent Advances in Anthocyanin Biosynthesis during Leaf Senescence. BIOLOGY 2024; 13:329. [PMID: 38785811 PMCID: PMC11117936 DOI: 10.3390/biology13050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Leaf senescence is the last stage of leaf development, and it is accompanied by a leaf color change. In some species, anthocyanins are accumulated during leaf senescence, which are vital indicators for both ornamental and commercial value. Therefore, it is essential to understand the molecular mechanism of anthocyanin accumulation during leaf senescence, which would provide new insight into autumn coloration and molecular breeding for more colorful plants. Anthocyanin accumulation is a surprisingly complex process, and significant advances have been made in the past decades. In this review, we focused on leaf coloration during senescence. We emphatically discussed several networks linked to genetic, hormonal, environmental, and nutritional factors in regulating anthocyanin accumulation during leaf senescence. This paper aims to provide a regulatory model for leaf coloration and to put forward some prospects for future development.
Collapse
Affiliation(s)
- Ziqi Pei
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yifei Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yong Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.P.); (Y.H.); (Y.L.)
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Liu S, Xiao Y, Bai C, Liu H, Su X, Jin P, Xu H, Cao L, Yao L. The physiological and biochemical responses to dark pericarp disease induced by excess manganese in litchi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108269. [PMID: 38096732 DOI: 10.1016/j.plaphy.2023.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024]
Abstract
Dark pericarp disease (DPD), a physiological disorder induced by excess Manganese (Mn) in litchi, severely impacts the appearance and its economic value. To elucidate the underlying mechanisms of DPD, this study investigated the variations of phenolic compound, antioxidant defense system, subcellular structure, and transcriptome profiles in both normal fruit and dark pericarp fruit (DPF) at three developmental stages (green, turning, and maturity) of 'Guiwei' litchi. The results reveal that excess Mn in DPF pericarp resulted in a significant increase in reactive oxygen species, especially H2O2, and subsequent alterations in antioxidant enzyme activities. Notably, SOD (EC 1.15.1.1) activity at the green stage, along with POD (EC 1.11.1.7) and APX (EC 1.11.1.11) activities at the turning and the maturity stages, and GST (EC 2.5.1.18) activity during fruit development, were markedly higher in DPF. Cell injury was observed in pericarp, facilitating the formation of dark materials in DPF. Transcriptome profiling further reveals that genes involved in flavonoid and anthocyanin synthesis were up-regulated during the green stage but down-regulated during the turning and maturity stages. In contrast, PAL (EC 4.3.1.24), C4H (EC 1.14.14.91), 4CL (EC 6.2.1.12), CAD (EC 1.1.1.195), and particularly POD, were up-regulated, leading to reduced flavonoid and anthocyanin accumulation and increased lignin content in DPF pericarp. The above suggests that the antioxidant system and phenolic metabolism jointly resisted the oxidative stress induced by Mn stress. We speculate that phenols, terpenes, or their complexes might be the substrates of the dark substances in DPF pericarp, but more investigations are needed to identify them.
Collapse
Affiliation(s)
- Silin Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Youping Xiao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China
| | - Huilin Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xuexia Su
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Jin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huiting Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Laixin Cao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Su X, Zhang X, Bai C, Liu H, Cao X, Yao L. Asymmetric distribution of mineral nutrients aggravates uneven fruit pigmentation driven by sunlight exposure in litchi. PLANTA 2023; 258:96. [PMID: 37819558 DOI: 10.1007/s00425-023-04250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Sunlight boosts anthocyanin synthesis/accumulation in sunny pericarp of litchi fruit, directly leading to uneven pigmentation. Distribution discrepancy of mineral element aggravates uneven coloration by modulating synthesis/accumulation of anthocyanin and sugar. Uneven coloration, characterized by red pericarp on sunny side and green pericarp on shady side, impacts fruit quality of 'Feizixiao' (cv.) litchi. The mechanisms of this phenomenon were explored by investigating the distribution of chlorophyll, flavonoids, sugars, and mineral elements in both types of pericarp. Transcriptome analysis in pericarp was conducted as well. Sunny pericarp contained higher anthocyanins in an order of magnitude and higher fructose, glucose, co-pigments (flavanols, flavonols, ferulic acid), and mineral elements like Ca, Mg and Mn, along with lower N, P, K, S, Cu, Zn and B (P < 0.01), compared to shady pericarp. Sunlight regulated the expression of genes involved in synthesis/accumulation of flavonoids and sugars and genes functioning in nutrient uptake and transport, leading to asymmetric distribution of these substances. Anthocyanins conferred red color on sunny pericarp, sugars, Ca and Mg promoted synthesis/accumulation of anthocyanins, and co-pigments enhanced color display of anthocyanins. The insufficiencies of anthocyanins, sugars and co-pigments, and inhibition effect of excess K, S, N and P on synthesis/accumulation of anthocyanins and sugars, jointly contributed to green color of shady pericarp. These findings highlight the role of asymmetric distribution of substances, mineral elements in particular, on uneven pigmentation in litchi, and provide insights into coloration improvement via precise fertilization.
Collapse
Affiliation(s)
- Xuexia Su
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaotong Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Huilin Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaoying Cao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
4
|
Liu S, Wang W, Chen J, Ma Z, Xiao Y, Chen Z, Zhang Y, Du X, Mu Y. Weed suppression and antioxidant activity of Astragalus sinicus L. decomposition leachates. FRONTIERS IN PLANT SCIENCE 2022; 13:1013443. [PMID: 36466260 PMCID: PMC9709434 DOI: 10.3389/fpls.2022.1013443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Astragalus sinicus L. (milk vetch), a versatile plant that has a soil-enriching effect as green manure, is widely planted in the temperate zone of China. In previous experiments, milk vetch incorporated into the soil as green manure showed potential for goosegrass control. However, "what exactly happens at the chemical level?" and "what are the compounds that are potentially responsible for the phytotoxic effects observed during those previous assays?" In a recent study, in vitro phytotoxicity bioassays and chemical analyses of milk vetch decomposition leachates were carried out to explore the relationship between the temporal phytotoxic effects and the dynamics of chemical composition. For that, milk vetch decomposition leachates with a decay time of 12 h, 9 days, 12 days, 15 days, and 18 days were analyzed for organic compounds by liquid chromatography. The main results were as follows: (1) three compounds with goosegrass suppression potential produced during the decomposed process, i.e., 4-ethylphenol, N-acrylimorpholine, and allyl isothiocyanate. 2-Hydroxyethyl acrylate was present in the 12-h decomposition leachates but was at its highest concentration of 127.1 µg ml-1 at 15 days. (2) The cultures were configured according to the four concentrations of goosegrass-resistant active substances measured in the 15-day decomposition leachate and, as with the 15-day decomposition leachate, the mixture cultures inhibited 100% of goosegrass germination at the high concentrations (≥ 30%), which suggests that these substances have goosegrass suppression potential. (3) The high total phenolic content (302.8-532.3 mg L-1), the total flavonoid content (8.4-72.1 mg L-1), and the reducing activity of the decomposition leachates for different decay times may explain why the incorporation of milk vetch into the soil did not lead to peroxidation of goosegrass in the previous study. (4) Finally, the changes in acid fraction and total content (1.9-4.2 mg ml-1) for different decay times explain the variations in pH of the decomposition leachates, which, when discussed in conjunction with previous studies, may lead to changes in soil nutrient effectiveness and consequently affect crop growth. This study can provide a reference for green weed control research.
Collapse
Affiliation(s)
- Silin Liu
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wenhui Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiaoyun Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhiyu Ma
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Youping Xiao
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhongwen Chen
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Ying Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiao Du
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yinghui Mu
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, College of Agronomy/Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|