1
|
Lauria G, Ceccanti C, Lo Piccolo E, El Horri H, Guidi L, Lawson T, Landi M. "Metabolight": how light spectra shape plant growth, development and metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14587. [PMID: 39482564 DOI: 10.1111/ppl.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/03/2024]
Abstract
Innovations in light technologies (i.e. Light Emitting Diodes; LED) and cover films with specific optical features (e.g. photo-selective, light-extracting) have revolutionized crop production in both protected environments and open fields. The possibility to modulate the light spectra, thereby enriching/depleting cultivated plants with targeted wavebands has attracted increasing interest from both basic and applicative research. Indeed, the light environment not only influences plant biomass production but is also a pivotal factor in shaping plant size, development and metabolism. In the last decade, the strict interdependence between specific wavebands and the accumulation of targeted secondary metabolites has been exploited to improve the quality of horticultural products. Innovation in LED lighting has also marked the improvement of streetlamp illumination, thereby posing new questions about the possible influence of light pollution on urban tree metabolism. In this case, it is urgent and challenging to propose new, less-impacting solutions by modulating streetlamp spectra in order to preserve the ecosystem services provided by urban trees. The present review critically summarizes the main recent findings related to the morpho-anatomical, physiological, and biochemical changes induced by light spectra management via different techniques in crops as well as in non-cultivated species. This review explores the following topics: (1) plant growth in monochromatic environments, (2) the use of greenhouse light supplementation, (3) the application of covering films with different properties, and (4) the drawbacks of streetlamp illumination on urban trees. Additionally, it proposes new perspectives offered by in planta photomodulation.
Collapse
Affiliation(s)
- Giulia Lauria
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Hafsa El Horri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Ziaei N, Talebi M, Sayed Tabatabaei BE, Sabzalian MR, Soleimani M. Intra-canopy LED lighting outperformed top LED lighting in improving tomato yield and expression of the genes responsible for lycopene, phytoene and vitamin C synthesis. Sci Rep 2024; 14:19043. [PMID: 39152138 PMCID: PMC11329737 DOI: 10.1038/s41598-024-69210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
Greenhouses located at high latitudes and in cloudy areas often experience a low quality and quantity of light, especially during autumn and winter. This low daily light integral (DLI) reduces production rate, quality, and nutritional value of many crops. This study was conducted on Sakhiya RZ F1 tomato plants to evaluate the impact of LED lights on the growth and nutritional value of tomatoes in a greenhouse with low daily light due to cloudy weather. The treatments included LED growth lights in three modes: top lighting, intra-canopy lighting, and combined top and intra-canopy lighting. The results showed that although the combined top and intra-canopy lighting reached the maximum increase in tomato yield, exposure to intra-canopy LED lighting alone outperformed in tomato fruit yield increase (28.46%) than exposure to top LED lighting alone (12.12%) when compared to no supplemental lighting during the entire production year. Intra-canopy exposure demonstrated the highest increase in tomato lycopene (31.3%), while top and intra-canopy lighting exhibited the highest increase in vitamin C content (123.4%) compared to the control. The LED light treatment also had a very positive effect on the expression of genes responsible for metabolic cycles, including Psy1, LCY-β, and VTC2 genes, which had collinearity with the increase in tomato fruit production.
Collapse
Affiliation(s)
- Negar Ziaei
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Majid Talebi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Masoud Soleimani
- Department of Bio-Light, Golnoor Scientific Corporation, Golnoor Sadra, Isfahan, 81636-54714, Iran
| |
Collapse
|
3
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Pashkovskiy P, Sleptsov N, Vereschagin M, Kreslavski V, Rudometova N, Sorokoumov P, Ashikhmin A, Bolshakov M, Kuznetsov V. Post-Harvest Red- and Far-Red-Light Irradiation and Low Temperature Induce the Accumulation of Carotenoids, Capsaicinoids, and Ascorbic Acid in Capsicum annuum L. Green Pepper Fruit. Foods 2023; 12:foods12081715. [PMID: 37107510 PMCID: PMC10137640 DOI: 10.3390/foods12081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Environmental factors, such as light of different spectral compositions and temperature, can change the level of activated photoreceptors which, in turn, can affect the biosynthesis of secondary metabolites in the cells of green fruit. By briefly irradiating the harvested fruit of Capsicum annuum L. hot peppers with red light (RL, maximum 660 nm) and far-red light (FRL, maximum 730 nm) and by keeping them at a low temperature, we attempted to determine whether the state of phytochromes in fruit affects the biosynthesis of secondary metabolites. Using HPLC, we analysed the qualitative composition and quantitative content of the main carotenoids and alkaloids and the chlorophylls and ascorbate, in pepper fruit exposed to the above factors. We measured the parameters characterising the primary photochemical processes of photosynthesis and the transcript levels of genes encoding capsaicin biosynthesis enzymes. The total carotenoids content in the fruit increased most noticeably after 24 h of RL irradiation (more than 3.5 times compared to the initial value), and the most significant change in the composition of carotenoids occurred when the fruit was irradiated with FRL for 72 h. The capsaicin alkaloid content increased markedly after 72 h of FRL irradiation (more than 8 times compared to the initial value). It was suggested that decrease in the activity of phytochromes due to a low temperature or FRL may result in an increase in the expression of the PAL and CAM genes.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Nikolay Sleptsov
- Department of Plant Physiology, Timiryazev Agricultural Academy-Russian State Agrarian University, Timiryazevskaya Street 49, Moscow 127434, Russia
| | - Mikhail Vereschagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Natalia Rudometova
- All-Russian Research Institute for Food Additives-Branch of VM Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, St. Petersburg 191014, Russia
| | - Pavel Sorokoumov
- All-Russian Research Institute for Food Additives-Branch of VM Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, St. Petersburg 191014, Russia
| | - Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| |
Collapse
|
5
|
Kwon YB, Lee JH, Roh YH, Choi IL, Kim Y, Kim J, Kang HM. Effect of Supplemental Inter-Lighting on Paprika Cultivated in an Unheated Greenhouse in Summer Using Various Light-Emitting Diodes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1684. [PMID: 37111907 PMCID: PMC10143467 DOI: 10.3390/plants12081684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
This study investigated the effects of supplemental inter-lighting on paprika (cv. Nagano RZ) in South Korea in summer using various LED light sources. The following LED inter-lighting treatments were used: QD-IL (blue + wide-red + far-red inter-lighting), CW-IL (cool-white inter-lighting), and B+R-IL (blue + red (1:2) inter-lighting). To investigate the effect of supplemental lighting on each canopy, top-lighting (CW-TL) was also used. Additionally, a control without supplemental lighting was included for comparison. Significant variations were observed in the plant growth indexes 42 days after treatment. The SPAD values and total chlorophyll content in the last period of cultivation were significantly higher than those of the control. In November, the marketable fruit yield was significantly higher than that of the control. QD-IL, CW-IL, and CW-TL resulted in significantly higher values of total soluble solids than the control, and CW-IL resulted in higher values of ascorbic acid content than the control. Regarding the economic analysis, CW-IL resulted in the highest net income rate (12.70%) compared with the control. Therefore, the light sources of CW-IL were assessed as suitable for supplemental lighting due to the highest total soluble solids, ascorbic acid content, and net income rate obtained.
Collapse
Affiliation(s)
- Yong Beom Kwon
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (Y.B.K.); (J.H.L.); (Y.H.R.)
| | - Joo Hwan Lee
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (Y.B.K.); (J.H.L.); (Y.H.R.)
| | - Yoo Han Roh
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (Y.B.K.); (J.H.L.); (Y.H.R.)
| | - In-Lee Choi
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yongduk Kim
- Cheorwon Plasma Research Institute, Cheorwon 24062, Republic of Korea;
| | - Jidong Kim
- FutureGreen Co., Ltd., Yongin 17095, Republic of Korea;
| | - Ho-Min Kang
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (Y.B.K.); (J.H.L.); (Y.H.R.)
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea;
| |
Collapse
|
6
|
Kim D, Ra I, Son JE. Fruit quality and volatile compounds of greenhouse sweet peppers as affected by the LED spectrum of supplementary interlighting. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2593-2601. [PMID: 36624038 DOI: 10.1002/jsfa.12439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Seasonal low light intensity and short photoperiods lead to decreased yield, size, and quality of fruits in the Northern Hemisphere. Recently, supplemental lighting using light-emitting diodes (LEDs) has been introduced to overcome such problems. However, most studies have focused on plant growth or fruit yield but not on taste. This study aimed to evaluate the quality and volatile compounds of greenhouse sweet pepper fruits under three different lighting conditions: natural light only (NL), NL with red/blue interlighting (RB), and NL with red/blue/far-red interlighting (RBFR). RESULTS The size, color, firmness, and soluble sugar concentration of the sweet pepper fruit were investigated, and sensory evaluation was conducted by nine trained panelists. Individual fruit fresh weights were higher in the order of RBFR, NL, and RB, with mean values of 219.1, 201.7, and 197.4 g, respectively. Additionally, the composition of volatile compounds demonstrated a distinct clustering pattern by light treatment, implying that the LED interlighting spectra affected the overall taste of sweet pepper fruits. Sensory evaluation indicated that sweetness was higher in the order of RBFR, RB, and NL, with values of 5.28, 4.36, and 3.72, respectively. The soluble sugar results showed the same order as that for the sensory evaluation of sweetness, i.e., RBFR, RB, and NL, with values of 5071, 4647, and 3978 μg -1 fresh weight, respectively. CONCLUSION Adding far-red to RB interlighting could improve the fruit quality attributes, fruit taste perception, and soluble sugars of sweet peppers compared to those under RB or solely NL. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongpil Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Inseok Ra
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Si C, Yang S, Lou X, Zhang G, Zhong Q. Effects of light spectrum on the morphophysiology and gene expression of lateral branching in Pepino ( Solanum muricatum). FRONTIERS IN PLANT SCIENCE 2022; 13:1012086. [PMID: 36212344 PMCID: PMC9540516 DOI: 10.3389/fpls.2022.1012086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In the present study, we determined the morphological and physiological indicators of Pepino to elucidate its lateral branching responses to different light qualities using a full-spectrum lamp (F) as the control and eight different light ratios using blue light (B) and red light (R). In addition, correlation analysis revealed that the gene expression patterns correlated with lateral branching under various light treatments. Compared with the F treatment, the R treatment increased the plant height and inhibited the elongation of lateral branches, in contrast with the B treatment. The number of lateral branches did not change significantly under different light quality treatments. Moreover, correlation analysis showed that the ratio of blue light was significantly positively correlated with the length of lateral branches and significantly negatively correlated with plant height, aboveground dry weight, and other indicators. We conducted transcriptome sequencing of the sites of lateral branching at three periods under different light quality treatments. The gene related to photodynamic response, cryptochrome (CRY), was the most highly expressed under B treatment, negatively regulated lateral branch length, and positively correlated with plant height. Branched 1, a lateral branch regulation gene, was upregulated under R treatment and inhibited branching. Overall, the red light facilitated internode elongation, leaf area expansion, plant dry weight increase, and inhibition of lateral branching. Soluble sugar content increased, and the lateral branches elongated under blue light. Different light qualities regulated lateral branching by mediating different pathways involving strigolactones and CRY. Our findings laid a foundation for further clarifying the response mechanism of Pepino seedlings to light and provided a theoretical reference for elucidating the regulation of different light qualities on the lateral branching of Pepino.
Collapse
Affiliation(s)
- Cheng Si
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
- Qinghai University, Xining, China
| | - Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
- College of Life Sciences, Northwest A&F University, Xining, China
| | - Xiangyun Lou
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
| | - Guangnan Zhang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Xi’an, China
| |
Collapse
|