1
|
Chen F, Chen L, Yan Z, Xu J, Feng L, He N, Guo M, Zhao J, Chen Z, Chen H, Yao G, Liu C. Recent advances of CRISPR-based genome editing for enhancing staple crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1478398. [PMID: 39376239 PMCID: PMC11456538 DOI: 10.3389/fpls.2024.1478398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024]
Abstract
An increasing population, climate change, and diminishing natural resources present severe threats to global food security, with traditional breeding and genetic engineering methods often falling short in addressing these rapidly evolving challenges. CRISPR/Cas systems have emerged as revolutionary tools for precise genetic modifications in crops, offering significant advancements in resilience, yield, and nutritional value, particularly in staple crops like rice and maize. This review highlights the transformative potential of CRISPR/Cas technology, emphasizing recent innovations such as prime and base editing, and the development of novel CRISPR-associated proteins, which have significantly improved the specificity, efficiency, and scope of genome editing in agriculture. These advancements enable targeted genetic modifications that enhance tolerance to abiotic stresses as well as biotic stresses. Additionally, CRISPR/Cas plays a crucial role in improving crop yield and quality by enhancing photosynthetic efficiency, nutrient uptake, and resistance to lodging, while also improving taste, texture, shelf life, and nutritional content through biofortification. Despite challenges such as off-target effects, the need for more efficient delivery methods, and ethical and regulatory concerns, the review underscores the importance of CRISPR/Cas in addressing global food security and sustainability challenges. It calls for continued research and integration of CRISPR with other emerging technologies like nanotechnology, synthetic biology, and machine learning to fully realize its potential in developing resilient, productive, and sustainable agricultural systems.
Collapse
Affiliation(s)
- Feng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Lu Chen
- Pharma Technology A/S, Køge, Denmark
| | - Zhao Yan
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Jingyuan Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Luoluo Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Na He
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Mingli Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengzhen Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhang L, Zhao J, Kong L, Huang W, Peng H, Peng D, Meksem K, Liu S. No Pairwise Interactions of GmSNAP18, GmSHMT08 and AtPR1 with Suppressed AtPR1 Expression Enhance the Susceptibility of Arabidopsis to Beet Cyst Nematode. PLANTS (BASEL, SWITZERLAND) 2023; 12:4118. [PMID: 38140445 PMCID: PMC10747334 DOI: 10.3390/plants12244118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
GmSNAP18 and GmSHMT08 are two major genes conferring soybean cyst nematode (SCN) resistance in soybean. Overexpression of either of these two soybean genes would enhance the susceptibility of Arabidopsis to beet cyst nematode (BCN), while overexpression of either of their corresponding orthologs in Arabidopsis, AtSNAP2 and AtSHMT4, would suppress it. However, the mechanism by which these two pairs of orthologous genes boost or inhibit BCN susceptibility of Arabidopsis still remains elusive. In this study, Arabidopsis with simultaneously overexpressed GmSNAP18 and GmSHMT0 suppressed the growth of underground as well as above-ground parts of plants. Furthermore, Arabidopsis that simultaneously overexpressed GmSNAP18 and GmSHMT08 substantially stimulated BCN susceptibility and remarkably suppressed expression of AtPR1 in the salicylic acid signaling pathway. However, simultaneous overexpression of GmSNAP18 and GmSHMT08 did not impact the expression of AtJAR1 and AtHEL1 in the jasmonic acid and ethylene signaling pathways. GmSNAP18, GmSHMT08, and a pathogenesis-related (PR) protein, GmPR08-Bet VI, in soybean, and AtSNAP2, AtSHMT4, and AtPR1 in Arabidopsis could interact pair-wisely for mediating SCN and BCN resistance in soybean and Arabidopsis, respectively. Both AtSNAP2 and AtPR1 were localized on the plasma membrane, and AtSHMT4 was localized both on the plasma membrane and in the nucleus of cells. Nevertheless, after interactions, AtSNAP2 and AtPR1 could partially translocate into the cell nucleus. GmSNAP18 interacted with AtSHMT4, and GmSHMT4 interacted with AtSNAP2. However, neither GmSNAP18 nor GmSHMT08 interacted with AtPR1. Thus, no pairwise interactions among α-SNAPs, SHMTs, and AtPR1 occurred in Arabidopsis overexpressing either GmSNAP18 or GmSHMT08, or both of them. Transgenic Arabidopsis overexpressing either GmSNAP18 or GmSHMT08 substantially suppressed AtPR1 expression, while transgenic Arabidopsis overexpressing either AtSNAP2 or AtSHMT4 remarkably enhanced it. Taken together, no pairwise interactions of GmSNAP18, GmSHMT08, and AtPR1 with suppressed expression of AtPR1 enhanced BCN susceptibility in Arabidopsis. This study may provide a clue that nematode-resistant or -susceptible functions of plant genes likely depend on both hosts and nematode species.
Collapse
Affiliation(s)
- Liuping Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| |
Collapse
|
3
|
Usovsky M, Gamage VA, Meinhardt CG, Dietz N, Triller M, Basnet P, Gillman JD, Bilyeu KD, Song Q, Dhital B, Nguyen A, Mitchum MG, Scaboo AM. Loss-of-function of an α-SNAP gene confers resistance to soybean cyst nematode. Nat Commun 2023; 14:7629. [PMID: 37993454 PMCID: PMC10665432 DOI: 10.1038/s41467-023-43295-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Plant-parasitic nematodes are one of the most economically impactful pests in agriculture resulting in billions of dollars in realized annual losses worldwide. Soybean cyst nematode (SCN) is the number one biotic constraint on soybean production making it a priority for the discovery, validation and functional characterization of native plant resistance genes and genetic modes of action that can be deployed to improve soybean yield across the globe. Here, we present the discovery and functional characterization of a soybean resistance gene, GmSNAP02. We use unique bi-parental populations to fine-map the precise genomic location, and a combination of whole genome resequencing and gene fragment PCR amplifications to identify and confirm causal haplotypes. Lastly, we validate our candidate gene using CRISPR-Cas9 genome editing and observe a gain of resistance in edited plants. This demonstrates that the GmSNAP02 gene confers a unique mode of resistance to SCN through loss-of-function mutations that implicate GmSNAP02 as a nematode virulence target. We highlight the immediate impact of utilizing GmSNAP02 as a genome-editing-amenable target to diversify nematode resistance in commercially available cultivars.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Vinavi A Gamage
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Clinton G Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Nicholas Dietz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Marissa Triller
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Pawan Basnet
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Jason D Gillman
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, 65211, USA
| | - Kristin D Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, 65211, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Bishnu Dhital
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Alice Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Mahmood A, Bilyeu KD, Škrabišová M, Biová J, De Meyer EJ, Meinhardt CG, Usovsky M, Song Q, Lorenz AJ, Mitchum MG, Shannon G, Scaboo AM. Cataloging SCN resistance loci in North American public soybean breeding programs. FRONTIERS IN PLANT SCIENCE 2023; 14:1270546. [PMID: 38053759 PMCID: PMC10694258 DOI: 10.3389/fpls.2023.1270546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
Soybean cyst nematode (SCN) is a destructive pathogen of soybeans responsible for annual yield loss exceeding $1.5 billion in the United States. Here, we conducted a series of genome-wide association studies (GWASs) to understand the genetic landscape of SCN resistance in the University of Missouri soybean breeding programs (Missouri panel), as well as germplasm and cultivars within the United States Department of Agriculture (USDA) Uniform Soybean Tests-Northern Region (NUST). For the Missouri panel, we evaluated the resistance of breeding lines to SCN populations HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2), HG 0 (Race 3), HG 2.5.7 (Race 5), and HG 1.3.6.7 (Race 14) and identified seven quantitative trait nucleotides (QTNs) associated with SCN resistance on chromosomes 2, 8, 11, 14, 17, and 18. Additionally, we evaluated breeding lines in the NUST panel for resistance to SCN populations HG 2.5.7 (Race 1) and HG 0 (Race 3), and we found three SCN resistance-associated QTNs on chromosomes 7 and 18. Through these analyses, we were able to decipher the impact of seven major genetic loci, including three novel loci, on resistance to several SCN populations and identified candidate genes within each locus. Further, we identified favorable allelic combinations for resistance to individual SCN HG types and provided a list of available germplasm for integration of these unique alleles into soybean breeding programs. Overall, this study offers valuable insight into the landscape of SCN resistance loci in U.S. public soybean breeding programs and provides a framework to develop new and improved soybean cultivars with diverse plant genetic modes of SCN resistance.
Collapse
Affiliation(s)
- Anser Mahmood
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Kristin D. Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, United States
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Jana Biová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Elizabeth J. De Meyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Clinton G. Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Aaron J. Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
| | - Grover Shannon
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Andrew M. Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|