1
|
Shen J, Li P, Chu H, Li Y, Meng X, Li Z, Dou J, Wang W, Liu C, Xiao P, He C, Yi Z. Pharmacophylogenetic insights into Scutellaria strigillosa Hemsl.: chloroplast genome and untargeted metabolomics, quantitative analysis and antibacterial analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1472204. [PMID: 39385988 PMCID: PMC11461247 DOI: 10.3389/fpls.2024.1472204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Scutellaria strigillosa Hemsl., known for its traditional use in Chinese herbal medicine, is valued for heat-clearing and detoxifying, promoting diuresis, reducing swelling, alleviating pain, and preventing miscarriage. Despite its historical use, comprehensive studies on pharmacophylogenetic analysis, including genetic and chemical profiles and the antimicrobial activity of S. strigillosa are still lacking. Understanding these aspects is crucial for fully realizing its therapeutic potential and ensuring sustainable use. This study aims to elucidate these aspects through comparative genomics, metabolomics, and antimicrobial assays with Scutellaria baicalensis Georgi and Scutellaria barbata D. Don. The chloroplast genome of S. strigillosa was assembled, measuring 152,533 bp, and revealing a high degree of conservation, especially in the protein-coding regions, and identified four regions trnK(UUU)-rps16, trnN(GUU)-trnR(ACG), accD-psaI, psbE-petL) of variability that could serve as phylogenetic markers. The phylogenetic analysis revealed a closer genetic relationship of S. strigillosa with S. tuberifera and S. scordifolia than traditionally classified, suggesting a need for taxonomic reevaluation within the genus. UPLC-Q-TOF-MS analysis in negative ion mode was used to explore the chemical diversity among these species, revealing distinct variations in their chemical compositions. S. strigillosa shared a closer chemical profile with S. barbata, aligning with phylogenetic findings. Metabolomic identification through Progenesis QI software resulted in the tentative identification of 112 metabolites, including a substantial number of flavonoids, diterpenoids, iridoid glycosides, phenylethanoid glycosides, and others. HPLC analysis further detailed the concentrations of 12 actives across the species, highlighting the variation in compound content. S. strigillosa shows antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, similar to S. baicalensis root extracts. This research enhances the understanding of the phylogenetic and phytochemical profiles and the antibacterial activity of S. strigillosa, offering new insights into its medicinal properties. The findings suggest a need for taxonomic reevaluation within the genus and underscore the potential antibacterial activity of S. strigillosa for therapeutic applications. Further studies are encouraged to explore its full medicinal potential and contribute to the sustainable development of Scutellaria species.
Collapse
Affiliation(s)
- Jie Shen
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Panpan Li
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Hairong Chu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yong Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xiangying Meng
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Zhenpeng Li
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Jiayao Dou
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Wentao Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Chenyang Liu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Qi S, Zeng T, Sun L, Yin M, Wu P, Ma P, Xu L, Xiao P. The effect of vine tea (Ampelopsis grossedentata) extract on fatigue alleviation via improving muscle mass. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117810. [PMID: 38266948 DOI: 10.1016/j.jep.2024.117810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vine Tea (VT, Ampelopsis grossedentata), boasts a venerable tradition in China, with a recorded consumption history exceeding 1200 years. Predominantly utilized by ethnic groups in southwest China, this herbal tea is celebrated for its multifaceted therapeutic attributes. Traditionally, VT has been employed to alleviate heat and remove toxins, exhibit anti-inflammatory properties, soothe sore throats, lower blood pressure, and fortify bones and muscles. In the realm of functional foods derived from plant resources, VT has garnered attention for its potential in crafting anti-fatigue beverages or foods, attributed to its promising efficacy and minimal side effects. Currently, in accordance with the Food Safety Standards set forth by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China, VT serves as a raw material in various beverages. AIM OF THE STUDY VT has an anti-fatigue or similar effect in folk. However, the underlying molecular mechanisms contributing to VT's anti-fatigue effects remain elusive. This study endeavors to investigate the influence of Vine Tea Aqueous Extract (VTE) on fatigue mitigation and to elucidate its operative mechanisms, with the objective of developing VTE as a functional beverage. MATERIALS AND METHODS The preparation of VTE involved heat extraction and freeze-drying processes, followed by the identification of its metabolites using UPLC-QTOF-MS to ascertain the chemical composition of VTE. A fatigue model was established using a forced swimming test in mice. Potential molecular targets were identified through network pharmacology, transcriptome analysis, and molecular docking. Furthermore, RT-PCR and Western blot techniques were employed to assess mRNA and protein expressions related to the AMPK and FoxO pathways. RESULTS VTE significantly prolonged the duration of swimming time in an exhaustive swimming test in a dose-dependent manner, while simultaneously reducing the concentrations of blood lactic acid (LA), lactate dehydrogenase (LDH), serum urea nitrogen (SUN), and creatine kinase (CK). Notably, the performance of the high-dose VTE group surpassed that of the well-recognized ginsenoside. VTE demonstrated a regulatory effect akin to ginsenoside on the AMPK energy metabolism pathway and induced downregulation in the expression of Gadd45α, Cdkn1a, FOXO1, and Fbxo32 genes, suggesting an enhancement in skeletal muscle mass. These findings indicate that VTE can improve energy metabolism and muscle mass concurrently. CONCLUSIONS VTE exhibits significant anti-fatigue effects, and its mechanism is intricately linked to the modulation of the AMPK and FoxO pathways. Crucially, no caffeine or other addictive substances with known side effects were detected in VTE. Consequently, vine tea shows substantial promise as a natural resource for the development of anti-fatigue beverages within the food industry.
Collapse
Affiliation(s)
- Shunyao Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiexin Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Le Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meiling Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Chen P, Pang C, Xu T, Dong P, Han H. Characterization of chemical constituents and metabolites in vivo and in vitro after oral administration of Wuteng tablets in rats by UHPLC-Q/TOF-MS. Biomed Chromatogr 2023; 37:e5704. [PMID: 37496363 DOI: 10.1002/bmc.5704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023]
Abstract
Waste medicinal plants are widely used in drug production. With the increasing demand for botanical drugs, there is an urgent need to identify new and effective drugs and improve the utilization of medicinal plant resources. Wuteng tablets (WTP) are extracted from the stem of Schisandra chinensis and have a good therapeutic effect on Alzheimer's disease. In this study, a holistic identification strategy based on UHPLC-Q/TOF-MS was developed for the first time to investigate the metabolites and metabolic pathways involved in the in vitro metabolism and liver microsomal incubation and in the in vivo metabolic system of rats after WTP administration. After the oral administration of WTP, 21 metabolites were identified in the serum and 25 metabolites were identified in the urine, of which six were new metabolites; 33 metabolites were inferred from the microsomal metabolites in vitro. The metabolic pathways related to WTP mainly involve demethylation, hydroxylation, dehydroxylation and dehydrogenation. In this study, the metabolites and metabolic pathways of WTP were elucidated via UHPLC-Q/TOF-MS, which provided a basis for an in-depth study of the pharmacodynamic and pharmacotoxicological effects of WTP.
Collapse
Affiliation(s)
- Pengyi Chen
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chengguo Pang
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Tianen Xu
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Yang M, Ma L, Su R, Guo R, Zhou N, Liu M, Wu J, Wang Y, Hao Y. The Extract of Scutellaria baicalensis Attenuates the Pattern Recognition Receptor Pathway Activation Induced by Influenza A Virus in Macrophages. Viruses 2023; 15:1524. [PMID: 37515209 PMCID: PMC10384909 DOI: 10.3390/v15071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The dual strategy of inhibiting the viral life cycle and reducing the host inflammatory response should be considered in the development of therapeutic drugs for influenza A virus (IAV). In this study, an extract of Scutellaria baicalinase (SBE) containing seven flavonoids was identified to exert both antiviral and anti-inflammatory effects in macrophages infected with IAV. We performed transcriptome analysis using high-throughput RNA sequencing and identified 315 genes whose transcription levels were increased after IAV infection but were able to be decreased after SBE intervention. Combined with Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, these genes were mainly involved in TLR3/7/8, RIG-I/MDA5, NLRP3 and cGAS pattern recognition receptor (PRR)-mediated signaling pathways. SBE inhibited the transcription of essential genes in the above pathways and nuclear translocation of NF-κB p65 as confirmed by RT-qPCR and immunofluorescence, respectively, indicating that SBE reversed PR8-induced over-activation of the PRR signaling pathway and inflammation in macrophages. This study provides an experimental basis for applying Scutellaria baicalensis and its main effects in the clinical treatment of viral pneumonia. It also provides novel targets for screening and developing novel drugs to prevent and treat IAV infectious diseases.
Collapse
Affiliation(s)
- Mingrui Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Luyao Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rina Su
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Na Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Menghua Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jun Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
5
|
Wang Q, Liu W, Peng B, Gong X, Shi J, Zhang K, Li B, Tu P, Li J, Jiang J, Zhao Y, Song Y. Two-dimensional code enables visibly mapping herbal medicine chemome: an application in Ganoderma lucidum. Chin Med 2023; 18:6. [PMID: 36635742 PMCID: PMC9837956 DOI: 10.1186/s13020-022-00702-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Chemical profile provides the pronounced evidence for herbal medicine (HM) authentication; however, the chemome is extremely sophisticated. Fortunately, two-dimensional (2D) code, as a quick response means, is conceptually able to store abundant information, exactly fulfilling the chemical information storage demands of HMs. METHODS We here attempted to denote both MS[Formula: see text] and MS[Formula: see text] dataset of HM with a single 2D-code chart. Measurement of Ganoderma lucidum that is one of the most famous HMs with LC-MS/MS was employed to illustrate the "coding-decoding" workflow for the conversion amongst MS/MS dataset, 2D-code, and chemical profile, and to evaluate the applicability as well. After data acquisition, and m/z value of each deprotonated molecular signal was divided into integer and decimal portions, corresponding to x and y coordinates of 2D-plot, respectively. On the other side, m/z values of all its fragment ions were exactly assigned to serial x values sharing an identical y value being equal to the precursor ion. 2D-code was thereafter produced by plotting these defined dots at a 2D-chart. Regarding a given 2D-code map, the entire chart (x coordinate: 0-600; y coordinate: 0-600) was fragmented into two regions by the line of y=x. MS[Formula: see text] spectral signals always located below the line, whereas all fragment ions lay at the left zone. After extracting information from the edges of each square frame, m/z values of both precursor ion and fragment ions could be harvested and putatively deciphered to a compound through applying some empirical mass fragmentation rules. RESULTS The entire code of Ganoderma lucidum fruit bodies therefore corresponded exactly to a compound set. The elution program, even the employment of direct infusion, couldn't significantly impact the code, and dramatical differences occurred between different species and amongst different parts of Ganoderma lucidum as well. Not only ganoderic acid cluster but also certain primary metabolites served as the diagnostic compounds towards species differentiation. CONCLUSION 2D-code might be a meaningful, practical visual way for rapid HM recognition because it is convenient to achieve the conversion amongst MS/MS dataset, 2D-barcode plot, and the chemome.
Collapse
Affiliation(s)
- Qian Wang
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Peng
- Amway (China) Botanical Research Center, Wuxi, China
| | - Xingcheng Gong
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Zhang
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Pengfei Tu
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Jiang
- grid.495496.3Shandong Institute for Food and Drug Control, Ji’nan, China
| | - Yunfang Zhao
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Song
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|