1
|
Muturi EJ, Dunlap CA, Perry WL, Rhykerd RL. Cover crop species influences soil fungal species richness and community structure. PLoS One 2024; 19:e0308668. [PMID: 39264892 PMCID: PMC11392335 DOI: 10.1371/journal.pone.0308668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 09/14/2024] Open
Abstract
Despite the well documented link between cover cropping and soil microbiology, the influence of specific cover crop species on soil microbes remains poorly understood. We evaluated how soil fungal communities in a no till system respond to four cover crop treatments: no cover crop (REF), cereal ryegrass (CRYE), wild pennycress (WPEN), and a mix of pea, clover, radish, and oat (PCRO). Soil samples were collected from experimental plots following termination of cover crops from depths of 0-2 cm and 2-4 cm where cover crops had significantly increased soil organic matter. There was no significant interaction between soil depth and cover crop treatment on either alpha diversity or beta diversity. All cover crop treatments (CRYE, PCRO, and WPEN) enhanced soil fungal richness but only CRYE enhanced soil fungal diversity and altered the fungal community structure. Soil depth altered the fungal community structure but had no effect on fungal diversity and richness. Genus Fusarium which includes some of the most economically destructive pathogens was more abundant in REF and PCRO treatments compared to CRYE and WPEN. In contrast, genus Mortierella which is known to promote plant health was more abundant in all cover crop treatments relative to the REF. These findings demonstrate that cover cropping can increase soil fungal species richness and alter fungal community structure, potentially promoting the abundance of beneficial fungi and reducing the abundance of some plant pathogens within the genus Fusarium. These effects are dependent on cover crop species, a factor that should be considered when selecting appropriate cover crops for a particular cropping system.
Collapse
Affiliation(s)
- Ephantus J Muturi
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, Illinois, United States of America
| | - Christopher A Dunlap
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, Illinois, United States of America
| | - William L Perry
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Robert L Rhykerd
- Department of Agriculture, Illinois State University, Normal, Illinois, United States of America
| |
Collapse
|
2
|
Thenappan DP, Thompson D, Joshi M, Mishra AK, Joshi V. Unraveling the spatio-temporal dynamics of soil and root-associated microbiomes in Texas olive orchards. Sci Rep 2024; 14:18214. [PMID: 39107341 PMCID: PMC11303695 DOI: 10.1038/s41598-024-68209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the structure and diversity of microbiomes is critical to establishing olives in non-traditional production areas. Limited studies have investigated soil and root-associated microbiota dynamics in olives across seasons or locations in the United States. We explored the composition and spatiotemporal patterns of the olive-associated microbial communities and specificity in two niches (rhizosphere and root endosphere), seasons (spring, summer, and fall), and domains (bacteria and fungi) in the microbiome of the olive cultivar Arbequina across three olive orchards in Texas. Phylum Proteobacteria, followed by Actinobacteriota, dominated the bacterial populations in the rhizosphere and endosphere. Rubrobacter and Actinophytocola were dominant taxa in the rhizosphere and root endosphere at the genus level. Among fungal communities, phylum Ascomycota was prevalent in the rhizosphere and endosphere, while members of the Chaetomiaceae family outnumbered other taxa in the root endosphere. As per the alpha diversity indices, the rhizosphere at Moulton showed much higher richness and diversity than other places, which predicted a significant difference in rhizosphere between locations for bacterial diversity and richness. There was no significant variation in the bacterial diversity in the niches and the fungal diversity within the root endosphere between locations. Beta diversity analysis confirmed the effect of compartments-in influencing community differences. Microbial diversity was apparent within the endosphere and rhizosphere. The seasons influenced only the rhizosphere fungal diversity, contrasting the bacterial diversity in either niche. The research provided a comprehensive overview of the microbial diversity in olive trees' rhizosphere and root endosphere. The abundance and composition of OTUs associated with the rhizosphere soil of Arbequina suggest its role as a source reservoir in defining the potential endophytes.
Collapse
Affiliation(s)
- Dhivya P Thenappan
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA
| | - Dalton Thompson
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA
| | - Madhumita Joshi
- The University of Texas at San Antonio (UTSA), San Antonio, TX, 78249, USA
| | - Amit Kumar Mishra
- Department of Botany, School of Life Sciences, Mizoram University, Aizawl, 796004, India
| | - Vijay Joshi
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA.
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Tang H, Liu Y, Yang X, Huang G, Liang X, Shah AN, Nawaz M, Hassan MU, Qumsani AT, Qari SH. Multiple cropping effectively increases soil bacterial diversity, community abundance and soil fertility of paddy fields. BMC PLANT BIOLOGY 2024; 24:715. [PMID: 39060975 PMCID: PMC11282777 DOI: 10.1186/s12870-024-05386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Crop diversification is considered as an imperative approach for synchronizing the plant nutrient demands and soil nutrient availability. Taking two or more crops from the same field in one year is considered as multiple cropping. It improves the diversity and abundance of soil microbes, thereby improving the growth and yield of crops. Therefore, the present study was conducted to explore the effects of different multiple winter cropping on soil microbial communities in paddy fields. In this study, eight rice cropping patterns from two multiple cropping systems with three different winter crops, including Chinese milk vetch (CMV), rape, and wheat were selected. The effects of different multiple winter cropping on soil microbial abundance, community structure, and diversity in paddy fields were studied by 16 S rRNA high-throughput sequencing and real-time fluorescence quantitative polymerase chain reaction (PCR). RESULTS The results showed that different multiple winter cropping increased the operational taxonomic units (OTUs), species richness, and community richness index of the bacterial community in 0 ~ 20 cm soil layer. Moreover, soil physical and chemical properties of different multiple cropping patterns also affected the diversity and abundance of microbial bacterial communities. The multiple cropping increased soil potassium and nitrogen content, which significantly affected the diversity and abundance of bacterial communities, and it also increased the overall paddy yield. Moreover, different winter cropping changed the population distribution of microorganisms, and Proteobacteria, Acidobacteria, Nitrospira, and Chloroflexi were identified as the most dominant groups. Multiple winter cropping, especially rape-early rice-late rice (TR) andChinese milk vetch- early rice-late rice (TC) enhanced the abundance of Proteobacteria, Acidobacteria, and Actinobacteria and decreased the relative abundance of Verrucomicrobia and Euryarchaeota. CONCLUSION In conclusion, winter cropping of Chinese milk vetch and rape were beneficial to improve the soil fertility, bacteria diversity, abundance and rice yield.
Collapse
Affiliation(s)
- Haiying Tang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Jiangxi Agricultural University, Ministry of Education, Nanchang, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ying Liu
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Xiaoqi Yang
- School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Guoqin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Jiangxi Agricultural University, Ministry of Education, Nanchang, China.
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xiaogui Liang
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Jiangxi Agricultural University, Ministry of Education, Nanchang, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Umair Hassan
- Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Jiangxi Agricultural University, Ministry of Education, Nanchang, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Alaa T Qumsani
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
McLaughlin MS, Roy M, Abbasi PA, Carisse O, Yurgel SN, Ali S. Why Do We Need Alternative Methods for Fungal Disease Management in Plants? PLANTS (BASEL, SWITZERLAND) 2023; 12:3822. [PMID: 38005718 PMCID: PMC10675458 DOI: 10.3390/plants12223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Fungal pathogens pose a major threat to food production worldwide. Traditionally, chemical fungicides have been the primary means of controlling these pathogens, but many of these fungicides have recently come under increased scrutiny due to their negative effects on the health of humans, animals, and the environment. Furthermore, the use of chemical fungicides can result in the development of resistance in populations of phytopathogenic fungi. Therefore, new environmentally friendly alternatives that provide adequate levels of disease control are needed to replace chemical fungicides-if not completely, then at least partially. A number of alternatives to conventional chemical fungicides have been developed, including plant defence elicitors (PDEs); biological control agents (fungi, bacteria, and mycoviruses), either alone or as consortia; biochemical fungicides; natural products; RNA interference (RNAi) methods; and resistance breeding. This article reviews the conventional and alternative methods available to manage fungal pathogens, discusses their strengths and weaknesses, and identifies potential areas for future research.
Collapse
Affiliation(s)
- Michael S. McLaughlin
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 4H5, Canada
| | - Maria Roy
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Pervaiz A. Abbasi
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| | - Odile Carisse
- Saint-Jean-sur-Richelieu Research Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Svetlana N. Yurgel
- United States Department of Agriculture (USDA), Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| |
Collapse
|
5
|
Trinchera A, Warren Raffa D. Weeds: An Insidious Enemy or a Tool to Boost Mycorrhization in Cropping Systems? Microorganisms 2023; 11:microorganisms11020334. [PMID: 36838299 PMCID: PMC9967897 DOI: 10.3390/microorganisms11020334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Weeds have always been considered an insidious enemy, capable of reducing crop production. Conversely, the agroecological vision attributes a key role to the spontaneous flora in promoting plant diversity and belowground interactions, which may improve the ecological performance of agroecosystems. We summarized the literature on the weeds' arbuscular-mycorrhizae (AM) interaction and we analyzed evidence on the: (i) AM suppressive/selective effect on weed communities; (ii) effect of weeds on AM colonization, and (iii) positive role of AM-supporting weeds on forming shared mycorrhizal hyphal connections in agroecosystems. While some authors conceptualized AM as a weed control tool, others underlined their selective effect on weed communities. Recent studies suggest that AM-host weeds can participate in the development of a common mycorrhizal mycelial network (MMN) among different plants species. Nevertheless, direct evidence of the actual exchange of nutrients and C between coexisting plants through MMN in agroecosystems is missing. Although the effect of agricultural practices on plant community-AM interactions are complex, more conservative farming management seems to foster AM populations. Future studies should focus on: (i) field studies, (ii) weed communities and their traits, rather than on the most abundant species, and (iii) the use of advanced analytical techniques, able to monitor MMN development and functionality.
Collapse
|