1
|
Li S, Jiang T, Ahmed W, Yang Y, Yang L, Zhang T, Mei F, Alharbi SA, Shan Q, Guo C, Zhao Z. Deciphering the impact of nitrogen morphologies distribution on nitrogen and biomass accumulation in tobacco plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1377364. [PMID: 39011300 PMCID: PMC11246850 DOI: 10.3389/fpls.2024.1377364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
Background and aims Nitrogen (N) distribution in plants is intricately linked to key physiological functions, including respiration, photosynthesis, structural development, and nitrogen storage. However, the specific effects of different N morphologies on N accumulation and plant growth are poorly understood. Our research specifically focused on determining how different N morphologies affect N absorption and biomass accumulation. Methods This study elucidated the impact of different application rates (CK: 0 g N/plant; T1: 4 g N/plant; T2: 8 g N/plant) of N fertilizer on N and biomass accumulation in tobacco cultivars Hongda and K326 at different growth stages. Results Our findings emphasize the critical role of N distribution in various plant parts, including leaves, stems, and roots, in determining the complex mechanisms of N and biomass accumulation in tobacco. We found that in relation to total N, a greater ratio of water-soluble N (N w) in leaves facilitated N accumulation in leaves. In contrast, an increased ratio of SDS (detergent)-insoluble N (N in-SDS) in leaves and non-protein N (N np) in roots hindered this increase. Additionally, our results indicate that a greater proportion of N np in leaves has a negative impact on biomass accumulation in leaves. Furthermore, elevated levels of N in-SDS, N w, and N np in roots, and N np in leaves adversely affected biomass accumulation in tobacco leaves. The Hongda cultivar exhibited greater biomass and N accumulation abilities as compared to K326. Conclusions Our findings highlight the significant role of distribution of N morphologies on plant growth, as well as N and biomass accumulation in tobacco plants. Understanding N distribution allows farmers to optimize N application, minimizing environmental losses and maximizing yield for specific cultivars. These insights advance sustainable agriculture by promoting efficient resource use and reducing environmental impact.
Collapse
Affiliation(s)
- Shichen Li
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tao Jiang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Waqar Ahmed
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yingfen Yang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Linyuan Yang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tao Zhang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fupeng Mei
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Qu Shan
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Cuilian Guo
- Yunnan Agricultural University, Kunming, Yunnan, China
| | | |
Collapse
|
2
|
Ramirez-Builes VH, Küsters J, Thiele E, Lopez-Ruiz JC. Physiological and Agronomical Response of Coffee to Different Nitrogen Forms with and without Water Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1387. [PMID: 38794457 PMCID: PMC11125271 DOI: 10.3390/plants13101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Nitrogen (N) is the most important nutrient in coffee, with a direct impact on productivity, quality, and sustainability. N uptake by the roots is dominated by ammonium (NH4+) and nitrates (NO3-), along with some organic forms at a lower proportion. From the perspective of mineral fertilizer, the most common N sources are urea, ammonium (AM), ammonium nitrates (AN), and nitrates; an appropriate understanding of the right balance between N forms in coffee nutrition would contribute to more sustainable coffee production through the better N management of this important crop. The aim of this research was to evaluate the influences of different NH4-N/NO3-N ratios in coffee from a physiological and agronomical perspective, and their interaction with soil water levels. Over a period of 5 years, three trials were conducted under controlled conditions in a greenhouse with different growing media (quartz sand) and organic soil, with and without water stress, while one trial was conducted under field conditions. N forms and water levels directly influence physiological responses in coffee, including photosynthesis (Ps), chlorophyll content, dry biomass accumulation (DW), nutrient uptake, and productivity. In all of the trials, the plants group in soils with N ratios of 50% NH4-N/50% NO3-N, and 25% NH4-N/75% NO3-N showed better responses to water stress, as well as a higher Ps, a higher chlorophyll content, a higher N and cation uptake, higher DW accumulation, and higher productivity. The soil pH was significantly influenced by the N forms: the higher the NO3--N share, the lower the acidification level. The results allow us to conclude that the combination of 50% NH4-N/50% NO3-N and 25% NH4-N/75% NO3-N N forms in coffee improves the resistance capacity of the coffee to water stress, improves productivity, reduces the soil acidification level, and improves ion balance and nutrient uptake.
Collapse
Affiliation(s)
- Victor Hugo Ramirez-Builes
- Center for Plant Nutrition and Environmental Research Hanninghof, Yara International, 48249 Dülmen, Germany
| | - Jürgen Küsters
- Center for Plant Nutrition and Environmental Research Hanninghof, Yara International, 48249 Dülmen, Germany
| | - Ellen Thiele
- Center for Plant Nutrition and Environmental Research Hanninghof, Yara International, 48249 Dülmen, Germany
| | | |
Collapse
|
3
|
Wu H, Liu Y, Zhang T, Xu M, Rao B. Impacts of Soil Properties on Species Diversity and Structure in Alternanthera philoxeroides-Invaded and Native Plant Communities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1196. [PMID: 38732411 PMCID: PMC11085794 DOI: 10.3390/plants13091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Soil properties can affect plant population dynamics and the coexistence of native and invasive plants, thus potentially affecting community structure and invasion trends. However, the different impacts of soil physicochemical properties on species diversity and structure in native and invaded plant communities remain unclear. In this study, we established a total of 30 Alternanthera philoxeroides-invaded plots and 30 control plots in an area at the geographical boundary between North and South China. We compared the differences in species composition between the invaded and native plant communities, and we then used the methods of regression analysis, redundancy analysis (RDA), and canonical correspondence analysis (CCA) to examine the impacts of soil physicochemical properties on four α-diversity indices and the species distribution of these two types of communities. We found that A. philoxeroides invasion increased the difference between the importance values of dominant plant species, and the invasion coverage had a negative relationship with the soil-available potassium (R2 = 0.135; p = 0.046) and Patrick richness index (R2 = 0.322; p < 0.001). In the native communities, the species diversity was determined with soil chemical properties, the Patrick richness index, the Simpson dominance index, and the Shannon-Wiener diversity index, which all decreased with the increase in soil pH value, available potassium, organic matter, and ammonium nitrogen. However, in the invaded communities, the species diversity was determined by soil physical properties; the Pielou evenness index increased with increasing non-capillary porosity but decreased with increasing capillary porosity. The determinants of species distribution in the native communities were soil porosity and nitrate nitrogen, while the determinants in the invaded communities were soil bulk density and available potassium. In addition, compared with the native communities, the clustering degree of species distribution in the invaded communities intensified. Our study indicates that species diversity and distribution have significant heterogeneous responses to soil physicochemical properties between A. philoxeroides-invaded and native plant communities. Thus, we need to intensify the monitoring of soil properties in invaded habitats and conduct biotic replacement strategies based on the heterogeneous responses of native and invaded communities to effectively prevent the biotic homogenization that is caused by plant invasions under environmental changes.
Collapse
Affiliation(s)
- Hao Wu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou 450046, China
- Xinyang Academy of Ecological Research, Xinyang 464000, China
- Dabie Mountain Laboratory, Xinyang 464000, China
| | - Yuxin Liu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
| | - Tiantian Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
| | - Mingxia Xu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
| | - Benqiang Rao
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (Y.L.); (T.Z.); (M.X.)
- Dabie Mountain Laboratory, Xinyang 464000, China
| |
Collapse
|
4
|
Kim SR, Lee J, Lee MG, Sung HG, Hwang SG. Analysis of microbial communities in solid and liquid pig manure during the fertilization process. Sci Rep 2024; 14:72. [PMID: 38168767 PMCID: PMC10761828 DOI: 10.1038/s41598-023-50649-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Utilizing livestock manure as organic fertilizer in sustainable agriculture is crucial and should be developed through an appropriate manufacturing process. Solid-liquid separation contributes to reducing odor, managing nutrients in livestock excretions, and lowering the cost of transporting manure to arable soil. To investigate the impact of fermentation after solid-liquid separation, we examined the specific correlation between chemical properties and bacterial communities in solid-liquid manures before and after the fermentation process. In terms of chemical properties before fermentation, the levels of electrical conductivity, nitrogen, ammonium nitrogen (NH4+-N), potassium, sodium, and chloride were higher in the liquid sample than in the solid sample. However, the chemical components of the liquid sample decreased during fermentation, which could be attributed to the low organic matter content. Many chemical components increased in the solid samples during fermentation. Fifty-six bacterial species were significantly correlated with NH4+-N and phosphorus. Following fermentation, their abundance increased in the solid samples and decreased in the liquid samples, indicating the potential for NH4+-N release or phosphorus mineralization from organic matter. These results provide information regarding changes in nutrient and bacterial formation when applying the fermentation process after solid-liquid separation.
Collapse
Affiliation(s)
- Soo-Ryang Kim
- Industry-Academic Cooperation Foundation, Sangji University, Wonju, 26339, Republic of Korea
| | - Junkyung Lee
- Department of Applied Plant Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Myung Gyu Lee
- Department of Smart Life Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Ha Guyn Sung
- Animal Feeding and Environment Laboratory, Department of Animal Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Sun-Goo Hwang
- Department of Smart Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
5
|
Lu Z, He S, Kashif M, Zhang Z, Mo S, Su G, Du L, Jiang C. Effect of ammonium stress on phosphorus solubilization of a novel marine mangrove microorganism Bacillus aryabhattai NM1-A2 as revealed by integrated omics analysis. BMC Genomics 2023; 24:550. [PMID: 37723472 PMCID: PMC10506230 DOI: 10.1186/s12864-023-09559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Phosphorus is one of the essential nutrients for plant growth. Phosphate-solubilizing microorganisms (PSMs) can alleviate available P deficiency and enhance plant growth in an eco-friendly way. Although ammonium toxicity is widespread, there is little understanding about the effect of ammonium stress on phosphorus solubilization (PS) of PSMs. RESULTS In this study, seven PSMs were isolated from mangrove sediments. The soluble phosphate concentration in culture supernatant of Bacillus aryabhattai NM1-A2 reached a maximum of 196.96 mg/L at 250 mM (NH4)2SO4. Whole-genome analysis showed that B. aryabhattai NM1-A2 contained various genes related to ammonium transporter (amt), ammonium assimilation (i.e., gdhA, gltB, and gltD), organic acid synthesis (i.e., ackA, fdhD, and idh), and phosphate transport (i.e., pstB and pstS). Transcriptome data showed that the expression levels of amt, gltB, gltD, ackA and idh were downregulated, while gdhA and fdhD were upregulated. The inhibition of ammonium transporter and glutamine synthetase/glutamate synthase (GS/GOGAT) pathway contributed to reducing energy loss. For ammonium assimilation under ammonium stress, accompanied by protons efflux, the glutamate dehydrogenase pathway was the main approach. More 2-oxoglutarate (2-OG) was induced to provide abundant carbon skeletons. The downregulation of formate dehydrogenase and high glycolytic rate resulted in the accumulation of formic acid and acetic acid, which played key roles in PS under ammonium stress. CONCLUSIONS The accumulation of 2-OG and the inhibition of GS/GOGAT pathway played a key role in ammonium detoxification. The secretion of protons, formic acid and acetic acid was related to PS. Our work provides new insights into the PS mechanism, which will provide theoretical guidance for the application of PSMs.
Collapse
Affiliation(s)
- Zhaomei Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defect prevention, Guangxi Zhuang Autonomous Region Women and Children Health Care Hospital, Nanning, 530033, China
| | - Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Zufan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guijiao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Linfang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory for Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| |
Collapse
|
6
|
Jerez MP, Ortiz J, Castro C, Escobar E, Sanhueza C, Del-Saz NF, Ribas-Carbo M, Coba de la Peña T, Ostria-Gallardo E, Fischer S, Castro PA, Bascunan-Godoy L. Nitrogen sources differentially affect respiration, growth, and carbon allocation in Andean and Lowland ecotypes of Chenopodium quinoa Willd. FRONTIERS IN PLANT SCIENCE 2023; 14:1070472. [PMID: 37409289 PMCID: PMC10319013 DOI: 10.3389/fpls.2023.1070472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/21/2023] [Indexed: 07/07/2023]
Abstract
Chenopodium quinoa Willd. is a native species that originated in the High Andes plateau (Altiplano) and its cultivation spread out to the south of Chile. Because of the different edaphoclimatic characteristics of both regions, soils from Altiplano accumulated higher levels of nitrate (NO3-) than in the south of Chile, where soils favor ammonium (NH4 +) accumulation. To elucidate whether C. quinoa ecotypes differ in several physiological and biochemical parameters related to their capacity to assimilate NO3- and NH4 +, juvenile plants of Socaire (from Altiplano) and Faro (from Lowland/South of Chile) were grown under different sources of N (NO3- or NH4 +). Measurements of photosynthesis and foliar oxygen-isotope fractionation were carried out, together with biochemical analyses, as proxies for the analysis of plant performance or sensitivity to NH4 +. Overall, while NH4 + reduced the growth of Socaire, it induced higher biomass productivity and increased protein synthesis, oxygen consumption, and cytochrome oxidase activity in Faro. We discussed that ATP yield from respiration in Faro could promote protein production from assimilated NH4 + to benefit its growth. The characterization of this differential sensitivity of both quinoa ecotypes for NH4 + contributes to a better understanding of nutritional aspects driving plant primary productivity.
Collapse
Affiliation(s)
- María Paz Jerez
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - José Ortiz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Catalina Castro
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Elizabeth Escobar
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Néstor Fernández Del-Saz
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Spain
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Spain
| | - Teodoro Coba de la Peña
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Enrique Ostria-Gallardo
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Susana Fischer
- Laboratorio de Fisiología Vegetal, Departamento de Producción vegetal Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Patricio Alejandro Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Luisa Bascunan-Godoy
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|