1
|
Xie RR, Wu S, Huang WL, Luo Y, Lin J, Cheng Y, Lu J, Yu W, Chen S, Li W, Chen LS. Assessment of cold resistance in tobacco varieties using JIP-test parameters and seedling growth. PHYSIOLOGIA PLANTARUM 2025; 177:e70078. [PMID: 39868639 DOI: 10.1111/ppl.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
Cold stress (CS) is a significant natural hazard, and distinguishing between plant cold resistance and sensitivity is critical for cultivar breeding and the development of germplasm resources. This study used 205 tobacco (Nicotiana tabacum L.) varieties from around the world to investigate the changes in the chlorophyll a fluorescence (OJIP) transients, JIP-test parameters, and seedling growth caused by seven days of CS (5°C) treatment. Their cold resistance was assessed using the cold-resistant coefficient, derived from the relative growth rate of shoots, damage scores, and JIP-test parameters. The results showed that total electron carriers per reaction center (Sm) and relative variable fluorescence at the I-step (VI) were better indicators of cold resistance than maximum quantum yield of photochemistry at t = 0 (Fv/Fm), which was widely used to assess plant cold resistance. Next, the study examined the effects of CS and subsequent recovery on OJIP transients, JIP-test parameters, and seedling growth in two highly resistant (HR) and two highly sensitive (HS) varieties to confirm the reliability of the assessment methods. The results indicated that HR varieties experienced less photoinhibitory damage to photosystem II, exhibited lower growth inhibition during CS, and showed better recovery during the recovery period compared to HS varieties. These findings suggested that the JIP-test parameters could serve as a reliable tool for assessing tobacco cold resistance and aid in selecting varieties with enhanced resilience to CS.
Collapse
Affiliation(s)
- Rong-Rong Xie
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengxin Wu
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaxin Luo
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Yazhi Cheng
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Wen Yu
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Mihaljević I, Viljevac vuletić M, Tomaš V, Zdunić Z, Vuković D. Photosynthetic responses of heat-stressed apple leaves to foliar application of salicylic and ascorbic acid. PHOTOSYNTHETICA 2024; 62:79-89. [PMID: 39650632 PMCID: PMC11609771 DOI: 10.32615/ps.2024.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 12/11/2024]
Abstract
High temperatures have significant impacts on fruit tree production. Foliar spraying application of promoting agents can be a sustainable approach to managing high-temperature stress in orchards. The mechanism of certain improving agents on photosynthesis is not yet well understood, particularly in fruit trees. Photosynthesis, as a vital and very sensitive process in plants, is a pivotal component in fruit production. Therefore, in this study, we explored the potential of two different promoting agents, salicylic acid (SA) and ascorbic acid (AsA), to alleviate oxidative stress caused by high temperature in controlled conditions (37°C for 1 h) at the photosynthetic level. For studying photosynthetic responses, we used chlorophyll fluorescence measurements. According to our findings, foliar application of promoting agents effectively increased the high-temperature tolerance of apple leaves, when compared to sole heat stress treatment. Both promoting agents significantly increased photosynthetic efficiency under stress, while the maximum was observed with AsA. In general, AsA and SA applications had a positive effect on the photosynthesis of apple leaves at high temperatures.
Collapse
Affiliation(s)
- I. Mihaljević
- Agricultural Institute Osijek, Južno predgrađe 17, HR-31000 Osijek, Croatia
| | | | - V. Tomaš
- Agricultural Institute Osijek, Južno predgrađe 17, HR-31000 Osijek, Croatia
| | - Z. Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, HR-31000 Osijek, Croatia
| | - D. Vuković
- Agricultural Institute Osijek, Južno predgrađe 17, HR-31000 Osijek, Croatia
| |
Collapse
|
3
|
Wang Q, Li B, Qiu Z, Lu Z, Hang Z, Wu F, Chen X, Zhu X. Genome-Wide Identification of MYC Transcription Factors and Their Potential Functions in the Growth and Development Regulation of Tree Peony ( Paeonia suffruticosa). PLANTS (BASEL, SWITZERLAND) 2024; 13:437. [PMID: 38337970 PMCID: PMC10857424 DOI: 10.3390/plants13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Tree peony (Paeonia suffruticosa Andr.) is a traditional Chinese flower with significant ornamental and medicinal value. Its growth and development process is regulated by some internal and external factors, and the related regulatory mechanism is largely unknown. Myelocytomatosis transcription factors (MYCs) play significant roles in various processes such as plant growth and development, the phytohormone response, and the stress response. As the identification and understanding of the MYC family in tree peony remains limited, this study aimed to address this gap by identifying a total of 15 PsMYCs in tree peony and categorizing them into six subgroups based on bioinformatics methods. Furthermore, the gene structure, conservative domains, cis-elements, and expression patterns of the PsMYCs were thoroughly analyzed to provide a comprehensive overview of their characteristics. An analysis in terms of gene structure and conserved motif composition suggested that each subtribe had similarities in function. An analysis of the promoter sequence revealed the presence of numerous cis-elements associated with plant growth and development, the hormone response, and the stress response. qRT-PCR results and the protein interaction network further demonstrated the potential functions of PsMYCs in the growth and development process. While in comparison to the control, only PsMYC2 exhibited a statistically significant variation in expression levels in response to exogenous hormone treatments and abiotic stress. A promoter activity analysis of PsMYC2 revealed its sensitivity to Flu and high temperatures, but exhibited no discernible difference under exogenous GA treatment. These findings help establish a basis for comprehending the molecular mechanism by which PsMYCs regulate the growth and development of tree peony.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xia Chen
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China; (Q.W.); (B.L.); (Z.Q.); (Z.L.); (Z.H.); (F.W.)
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China; (Q.W.); (B.L.); (Z.Q.); (Z.L.); (Z.H.); (F.W.)
| |
Collapse
|
4
|
Orzechowska A, Szymańska R, Sarna M, Żądło A, Trtílek M, Kruk J. The interaction between titanium dioxide nanoparticles and light can have dualistic effects on the physiological responses of plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13706-13721. [PMID: 38265580 DOI: 10.1007/s11356-024-31970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
The model plant Arabidopsis thaliana was exposed to combined stress factors, i.e., titanium dioxide nanoparticles (TiNPs) and high light. The concentrations of TiNPs used for irrigation were 250, 500, and 1000 μg/mL. This study shows that TiNPs alter the morphology and nanomechanical properties of chloroplasts in A. thaliana, which leads to a decrease in membrane elasticity. We found that TiNPs contributed to a delay in the thermal response of A. thaliana under dynamic light conditions, as revealed by non-invasive thermal imaging. The thermal time constants of TiNP-treated plants under excessive light are determined, showing a shortening in comparison to control plants. The results indicate that TiNPs may contribute to an alleviation of temperature stress experienced by plants under exposure to high light. In this research, we observed a decline in photosystem II photochemical efficiency accompanied by an increase in energy dissipation upon exposure to TiNPs. Interestingly, concentrations exceeding 250 µg/mL TiNPs appeared to mitigate the effects of high light, as shown by reduced differences in the values of specific OJIP parameters (FV/FM, ABS/RC, DI0/RC, and Pi_Abs) before and after light exposure.
Collapse
Affiliation(s)
- Aleksandra Orzechowska
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Renata Szymańska
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Andrzej Żądło
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Biophysics, Jagiellonian University Medical College, Św. Łazarza 16, 31-530, Kraków, Poland
| | - Martin Trtílek
- Photon Systems Instruments, Průmyslova 470, 664 24, Drásov, Czech Republic
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|