1
|
Hai Y, Qian Y, Yang M, Zhang Y, Xu H, Yang Y, Xia C. The chloroplast genomes of two medicinal species (Veronica anagallis-aquatica L. and Veronica undulata Wall.) and its comparative analysis with related Veronica species. Sci Rep 2024; 14:13945. [PMID: 38886540 PMCID: PMC11183227 DOI: 10.1038/s41598-024-64896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Veronica anagallis-aquatica L. and Veronica undulata Wall. are widely used ethnomedicinal plants in China. The two species have different clinical efficacies, while their extremely similar morphology and unclear interspecific relationship make it difficult to accurately identify them, leading to increased instances of mixed usage. This article reports on the complete chloroplast genomes sequence of these two species and their related Veronica species to conduct a comparative genomics analysis and phylogenetic construction. The results showed that the chloroplast (cp) genomes of Veronica exhibited typical circular quadripartite structures, with total lengths of 149,386 to 152,319 base pairs (bp), and GC content of 37.9 to 38.1%, and the number of genes was between 129-134. The total number of simple sequence repeats (SSRs) in V. anagallis-aquatica and V. undulata is 37 and 36, while V. arvensis had the highest total number of 56, predominantly characterized by A/T single bases. The vast majority of long repeat sequence types are forward repeats and palindromic repeats. Selective Ka/Ks values showed that three genes were under positive selection. Sequence differences often occur in the non-coding regions of the large single-copy region (LSC) and small single-copy region (SSC), with the lowest sequence variation in the inverted repeat regions (IR). Seven highly variable regions (trnT-GGU-psbD, rps8-rpl16, trnQ-UUG, trnN-GUU-ndhF, petL, ycf3, and ycf1) were detected, which may be potential molecular markers for identifying V. anagallis-aquatica and V. undulata. The phylogenetic tree indicates that there is a close genetic relationship between the genera Veronica and Neopicrorhiza, and V. anagallis-aquatica and V. undulata are sister groups. The molecular clock analysis results indicate that the divergence time of Veronica may occur at ∼ 9.09 Ma, and the divergence time of these two species occurs at ∼ 0.48 Ma. It is speculated that climate change may be the cause of Veronica species diversity and promote the radiation of the genus. The chloroplast genome data of nine Veronica specie provides important insights into the characteristics and evolution of the chloroplast genome of this genus, as well as the phylogenetic relationships of the genus Veronica.
Collapse
Affiliation(s)
- Yonglin Hai
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Yan Qian
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Meihua Yang
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Yue Zhang
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Huimei Xu
- College of Pharmacy, Dali University, Dali, 671000, China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China
| | - Yongcheng Yang
- College of Pharmacy, Dali University, Dali, 671000, China.
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China.
| | - Conglong Xia
- College of Pharmacy, Dali University, Dali, 671000, China.
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000, China.
| |
Collapse
|
2
|
Hu L, Lu T, Wang X, Wang J, Shi W. Conservation Priorities and Demographic History of Saussurea involucrata in the Tianshan Mountains and Altai Mountains. Life (Basel) 2023; 13:2209. [PMID: 38004349 PMCID: PMC10672382 DOI: 10.3390/life13112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Rare and vulnerable endemic plants represent different evolutionary units that occur at different times, and protecting these species is a key issue in biological protection. Understanding the impact of the history of endangered plant populations on their genetic diversity helps to reveal evolutionary history and is crucial for guiding conservation efforts. Saussurea involucrata, a perennial alpine species mainly distributed in the Tianshan Mountains, is famous for its medicinal value but has become endangered due to over-exploitation. In the present study, we employed both nuclear and chloroplast DNA sequences to investigate the genetic distribution pattern and evolutionary history of S. involucrata. A total of 270 individuals covering nine S. involucrata populations were sampled for the amplification and sequencing of nrDNA Internal Transcribed Spacer (ITS) and chloroplast trnL-trnF, matK and ndhF-rpl32 sequences. Via calculation, we identified 7 nuclear and 12 plastid haplotypes. Among the nine populations, GL and BA were characterized by high haplotype diversity, whereas BG revealed the lowest haplotype diversity. Molecular dating estimations suggest that divergence among S. involucrata populations occurred around 0.75 Ma, coinciding with the uplift of Tianshan Mountains. Our results reveal that both isolation-by-distance (IBD) and isolation-by-resistance (IBR) have promoted genetic differentiation among populations of S. involucrata. The results from the ecological niche modeling analyses show a more suitable habitat for S. involucrata in the past than at present, indicating a historical distribution contraction of the species. This study provides new insight into understanding the genetic differentiation of S. involucrata, as well as the theoretical basis for conserving this species.
Collapse
Affiliation(s)
- Lin Hu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.H.); (X.W.)
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830011, China;
| | - Ting Lu
- College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830011, China;
| | - Xiyong Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.H.); (X.W.)
- Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan 838008, China
| | - Jiancheng Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.H.); (X.W.)
- Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan 838008, China
| | - Wei Shi
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (L.H.); (X.W.)
- Turpan Eremophytes Botanic Garden, The Chinese Academy of Sciences, Turpan 838008, China
| |
Collapse
|
3
|
Zhu M, Liu Q, Liu F, Zheng L, Bing J, Zhou Y, Gao F. Gene Profiling of the Ascorbate Oxidase Family Genes under Osmotic and Cold Stress Reveals the Role of AnAO5 in Cold Adaptation in Ammopiptanthus nanus. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030677. [PMID: 36771760 PMCID: PMC9920380 DOI: 10.3390/plants12030677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
The uplift of the Qinghai Tibet Plateau has led to a drastic change in the climate in Central Asia, from warm and rainy, to dry and less rainfall. Ammopiptanthus nanus, a rare evergreen broad-leaved shrub distributed in the temperate desert region of Central Asia, has survived the drastic climate change in Central Asia caused by the uplift of the Qinghai-Tibet Plateau. Ascorbate oxidase (AO) regulates the redox status of the apoplast by catalyzing the oxidation of ascorbate acid to dehydroascorbic acid, and plays a key role in the adaptation of plants to environmental changes. Analyzing the evolution, environmental response, and biological functions of the AO family of A. nanus is helpful for understanding how plant genome evolution responds to climate change in Central Asia. A total of 16 AOs were identified in A. nanus, all of which contained the ascorbate oxidase domain, most of which contained transmembrane domain, and many were predicted to be localized in the apoplast. Segmental duplication and tandem duplication are the main factors driving the gene amplification of the AO gene family in A. nanus. Gene expression analysis based on transcriptome data and fluorescence quantitative PCR, as well as enzyme activity measurements, showed that the expression levels of AO genes and total enzyme activity decreased under short-term osmotic stress and low-temperature stress, but the expression of some AO genes (AnAO5, AnAO13, and AnAO16) and total enzyme activity increased under 7 days of cold stress. AnAO5 and AnAO11 are targeted by miR4415. Further functional studies on AnAO5 showed that AnAO5 protein was localized in the apoplast. The expression of AnAO5 in yeast cells and the transient expression in tobacco enhanced the tolerance of yeast and tobacco to low-temperature stress, and the overexpression of AnAO5 enhanced the tolerance of Arabidopsis seedlings to cold stress. Our research provides important data for understanding the role of AOs in plant adaptation to environmental change.
Collapse
Affiliation(s)
- Ming Zhu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fuyu Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Lamei Zheng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
4
|
Wang R, Gao J, Feng J, Yang Z, Qi Z, Li P, Fu C. Comparative and Phylogenetic Analyses of Complete Chloroplast Genomes of Scrophularia incisa Complex (Scrophulariaceae). Genes (Basel) 2022; 13:1691. [PMID: 36292576 PMCID: PMC9601301 DOI: 10.3390/genes13101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2023] Open
Abstract
The Scrophularia incisa complex is a group of closely related desert and steppe subshrubs that includes S. incisa, S. kiriloviana and S. dentata, which are the only S. sect. Caninae components found in Northwest China. Based on earlier molecular evidence, the species boundaries and phylogenetic relationships within this complex remain poorly resolved. Here, we characterized seven complete chloroplast genomes encompassing the representatives of the three taxa in the complex and one closely related species, S. integrifolia, as well as three other species of Scrophularia. Comparative genomic analyses indicated that the genomic structure, gene order and content were highly conserved among these eleven plastomes. Highly variable plastid regions and simple sequence repeats (SSRs) were identified. The robust and consistent phylogenetic relationships of the S. incisa complex were firstly constructed based on a total of 26 plastid genomes from Scrophulariaceae. Within the monophyletic complex, a S. kiriloviana individual from Pamirs Plateau was identified as the earliest diverging clade, followed by S. dentata from Tibet, while the remaining individuals of S. kiriloviana from the Tianshan Mountains and S. incisa from Qinghai-Gansu were clustered into sister clades. Our results evidently demonstrate the capability of plastid genomes to improve phylogenetic resolution and species delimitation, particularly among closely related species, and will promote the understanding of plastome evolution in Scrophularia.
Collapse
Affiliation(s)
- Ruihong Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jieying Feng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhaoping Yang
- Key Laboratory of Biological Resources and Conservation and Application, College of Life 9 Sciences, Tarim University, Alaer 843300, China
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengxin Fu
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|