1
|
Jiang X, Yang F, Jia W, Jiang Y, Wu X, Song S, Shen H, Shen J. Nanomaterials and Nanotechnology in Agricultural Pesticide Delivery: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18806-18820. [PMID: 39177444 DOI: 10.1021/acs.langmuir.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Pesticides play a crucial role in ensuring food production and food security. Conventional pesticide formulations can not meet the current needs of social and economic development, and they also can not meet the requirements of green agriculture. Therefore, there is an urgent need to develop efficient, stable, safe, and environmentally friendly pesticide formulations to gradually replace old formulations which have high pollution and low efficacy. The rise of nanotechnology provides new possibilities for innovation in pesticide formulations. Through reasonable design and construction of an environmentally friendly pesticide delivery system (PDS) based on multifunctional nanocarriers, the drawbacks of conventional pesticides can be effectively solved, realizing a water-based, nanosized, targeted, efficient, and safe pesticide system. In the past five years, researchers in chemistry, materials science, botany, entomology, plant protection, and other fields are paying close attention to the research of nanomaterials based PDSs and nanopesticide formulations and have made certain research achievements. These explorations provide useful references for promoting the innovation of nanopesticides and developing a new generation of green and environmentally friendly pesticide formulations. This Perspective summarizes the recent advances of nanomaterials in PDSs and nanopesticide innovation, aiming to provide useful guidance for carrier selection, surface engineering, controlled release conditions, and application in agriculture.
Collapse
Affiliation(s)
- Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Jia
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Youfa Jiang
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Xiaoju Wu
- Jiangsu Yangnong Chemical Co., Ltd., Yangzhou, 225009, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - He Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Fidan O. Draft genome of carotenoid-producing endophytic Pseudomonas sp. 102515 from Taxus chinensis. Microbiol Resour Announc 2024; 13:e0013924. [PMID: 38940526 PMCID: PMC11256829 DOI: 10.1128/mra.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Here, we report the draft genome sequence of endophytic Pseudomonas sp. 102515 isolated from Taxus chinensis collected from Logan, UT, USA. The genome is composed of 36 contigs and around 4.9 Mbp in size. The GC content is 66% with an N50 length of 918.9 kbp and L50 count of 2.
Collapse
Affiliation(s)
- Ozkan Fidan
- Department of Bioengineering, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
3
|
Kaewkla O, Perkins M, Thamchaipenet A, Saijuntha W, Sukpanoa S, Suriyachadkun C, Chamroensaksri N, Chumroenphat T, Franco CMM. Description of Streptomyces naphthomycinicus sp. nov., an endophytic actinobacterium producing naphthomycin A and its genome insight for discovering bioactive compounds. Front Microbiol 2024; 15:1353511. [PMID: 38694805 PMCID: PMC11061393 DOI: 10.3389/fmicb.2024.1353511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Endophytic actinobacteria are a group of bacteria living inside plant tissue without harmful effects, and benefit the host plant. Many can inhibit plant pathogens and promote plant growth. This study aimed to identify a strain of Streptomyces as a novel species and study its antibiotics production. An endophytic actinobacterium, strain TML10T was isolated from a surface-sterilized leaf of a Thai medicinal plant (Terminalia mucronata Craib and Hutch). As a result of a polyphasic taxonomy study, strain TML10T was identified as a member of the genus Streptomyces. Strain TML10T was an aerobic actinobacterium with well-developed substrate mycelia with loop spore chains and spiny surface. Chemotaxonomic data, including cell wall components, major menaquinones, and major fatty acids, confirmed the affiliation of strain TML10T to the genus Streptomyces. The results of the phylogenetic analysis, including physiological and biochemical studies in combination with a genome comparison study, allowed the genotypic and phenotypic differentiation of strain TML10T and the closest related type strains. The digital DNA-DNA hybridization (dDDH), Average nucleotide identity Blast (ANIb), and ANIMummer (ANIm) values between strain TML10T and the closest type strain, Streptomyces musisoli CH5-8T were 38.8%, 88.5%, and 90.8%, respectively. The name proposed for the new species is Streptomyces naphthomycinicus sp. nov. (TML10T = TBRC 15050T = NRRL B-65638T). Strain TML10T was further studied for liquid and solid-state fermentation of antibiotic production. Solid-state fermentation with cooked rice provided the best conditions for antibiotic production against methicillin-resistant Staphylococcus aureus. The elucidation of the chemical structures from this strain revealed a known antimicrobial agent, naphthomycin A. Mining the genome data of strain TML10T suggested its potential as a producer of antbiotics and other valuable compounds such as ε-Poly-L-lysine (ε-PL) and arginine deiminase. Strain TML10T contains the arcA gene encoding arginine deiminase and could degrade arginine in vitro.
Collapse
Affiliation(s)
- Onuma Kaewkla
- Center of Excellence in Biodiversity Research, Mahasarakham University, Maha Sarakham, Thailand
- Department of Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mike Perkins
- Deparment of Chemistry, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - Weerachai Saijuntha
- Center of Excellence in Biodiversity Research, Mahasarakham University, Maha Sarakham, Thailand
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Sudarat Sukpanoa
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nitcha Chamroensaksri
- National Biobank of Thailand (NBT), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Theeraphan Chumroenphat
- Aesthetic Sciences and Health Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| | | |
Collapse
|
4
|
Dos Reis JBA, Lorenzi AS, Pinho DB, Cortelo PC, do Vale HMM. The hidden treasures in endophytic fungi: a comprehensive review on the diversity of fungal bioactive metabolites, usual analytical methodologies, and applications. Arch Microbiol 2024; 206:185. [PMID: 38506928 DOI: 10.1007/s00203-024-03911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
This review provides a comprehensive overview of the key aspects of the natural metabolite production by endophytic fungi, which has attracted significant attention due to its diverse biological activities and wide range of applications. Synthesized by various fungal species, these metabolites encompass compounds with therapeutic, agricultural, and commercial significance. We delved into strategies and advancements aimed at optimizing fungal metabolite production. Fungal cultivation, especially by Aspergillus, Penicillium, and Fusarium, plays a pivotal role in metabolite biosynthesis, and researchers have explored both submerged and solid-state cultivation processes to harness the full potential of fungal species. Nutrient optimization, pH, and temperature control are critical factors in ensuring high yields of the targeted bioactive metabolites especially for scaling up processes. Analytical methods that includes High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), Gas Chromatography-Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS), are indispensable for the identification and quantification of the compounds. Moreover, genetic engineering and metabolic pathway manipulation have emerged as powerful tools to enhance metabolite production and develop novel fungal strains with increased yields. Regulation and control mechanisms at the genetic, epigenetic, and metabolic levels are explored to fine-tune the biosynthesis of fungal metabolites. Ongoing research aims to overcome the complexity of the steps involved to ensure the efficient production and utilization of fungal metabolites.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | - Danilo Batista Pinho
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | | | - Helson Mario Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
5
|
Chen X, Zhang M, Tang L, Huang S, Guo T, Li Q. Screening and characterization of biocontrol bacteria isolated from Ageratum conyzoides against Collectotrichum fructicola causing Chinese plum ( Prunus salicina Lindl.) anthracnose. Front Microbiol 2023; 14:1296755. [PMID: 38130944 PMCID: PMC10734640 DOI: 10.3389/fmicb.2023.1296755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Chinese plum (Prunus salicina Lindl.) is a nutritionally and economically important stone fruit widely grown around the world. Anthracnose, caused by Collectotrichum spp., is one of the primary biotic stress factors limiting plum production. Medicinal plants may harbor rhizospheric or endophytic microorganisms that produce bioactive metabolites that can be used as anthracnose biocontrol agents. Here, 27 bacterial isolates from the medicinal plant A. conyzoides with diverse antagonistic activities against C. fructicola were screened. Based on morphological, physiological, biochemical, and molecular characterization, 25 of these isolates belong to different species of genus Bacillus, one to Pseudomonas monsensis, and one more to Microbacterium phyllosphaerae. Eight representative strains showed high biocontrol efficacy against plum anthracnose in a pot experiment. In addition, several Bacillus isolates showed a broad spectrum of inhibitory activity against a variety of fungal phytopathogens. Analysis of the volatile organic compound profile of these eight representative strains revealed a total of 47 compounds, most of which were ketones, while the others included alkanes, alkenes, alcohols, pyrazines, and phenols. Overall, this study confirmed the potential value of eight bacterial isolates for development as anthracnose biocontrol agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Qili Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
6
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
7
|
Nath A, Sharma A, Singh SK, Sundaram S. Bio Prospecting of Endophytes and PGPRs in Artemisinin Production for the Socio-economic Advancement. Curr Microbiol 2023; 81:4. [PMID: 37947887 DOI: 10.1007/s00284-023-03516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/07/2023] [Indexed: 11/12/2023]
Abstract
The growing demand for Artemisia annua plants in healthcare, food, and pharmaceutical industries has led to increased cultivation efforts to extract a vital compound, Artemisinin. The efficacy of Artemisinin as a potent drug against malaria disease is well established but its limited natural abundance. However, the common practice of using chemical fertilizers for maximum yield has adverse effects on plant growth, development, and the quality of phytochemicals. To address these issues, the review discusses the alternative approach of harnessing beneficial rhizosphere microbiota, particularly plant growth-promoting rhizobacteria (PGPR). Microbes hold substantial biotechnological potential for augmenting medicinal plant production, offering an environmentally friendly and cost-effective means to enhance medicinal plant production. This review article aims to identify a suitable endophytic population capable of enabling Artemisia sp. to thrive amidst abiotic stress while simultaneously enhancing Artemisinin production, thereby broadening its availability to a larger population. Furthermore, by subjecting endophytes to diverse combinations of harsh conditions, this review sheds light on the modulation of essential artemisinin biosynthesis pathway genes, both up regulated and down regulated. The collective findings suggest that through the in vitro engineering of endophytic communities and their in vivo application to Artemisia plants cultivated in tribal population fields, artemisinin production can be significantly augmented. The overall aim of this review to explore the potential of harnessing microbial communities, their functions, and services to enhance the cultivation of medicinal plants. It outlines a promising path toward bolstering artemisinin production, which holds immense promise in the fight against malaria.
Collapse
Affiliation(s)
- Adi Nath
- Department of Botany, Nehru Gram Bharati Deemed to University, Prayagraj, 221505, India.
| | - Abhijeet Sharma
- Centres of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| | | | - Shanthy Sundaram
- Centres of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| |
Collapse
|
8
|
Wang Y, Zhang Y, Cong H, Li C, Wu J, Li L, Jiang J, Cao X. Cultivable Endophyte Resources in Medicinal Plants and Effects on Hosts. Life (Basel) 2023; 13:1695. [PMID: 37629552 PMCID: PMC10455732 DOI: 10.3390/life13081695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
With the increasing demand for medicinal plants and the increasing shortage of resources, improving the quality and yield of medicinal plants and making more effective use of medicinal plants has become an urgent problem to be solved. During the growth of medicinal plants, various adversities can lead to nutrient loss and yield decline. Using traditional chemical pesticides to control the stress resistance of plants will cause serious pollution to the environment and even endanger human health. Therefore, it is necessary to find suitable pesticide substitutes from natural ingredients. As an important part of the microecology of medicinal plants, endophytes can promote the growth of medicinal plants, improve the stress tolerance of hosts, and promote the accumulation of active components of hosts. Endophytes have a more positive and direct impact on the host and can metabolize rich medicinal ingredients, so researchers pay attention to them. This paper reviews the research in the past five years, aiming to provide ideas for improving the quality of medicinal plants, developing more microbial resources, exploring more medicinal natural products, and providing help for the development of research on medicinal plants and endophytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Y.W.); (Y.Z.); (H.C.); (C.L.); (J.W.); (L.L.); (J.J.)
| |
Collapse
|
9
|
Prodhan MY, Rahman MB, Rahman A, Akbor MA, Ghosh S, Nahar MNEN, Simo, Shamsuzzoha M, Cho KM, Haque MA. Characterization of Growth-Promoting Activities of Consortia of Chlorpyrifos Mineralizing Endophytic Bacteria Naturally Harboring in Rice Plants-A Potential Bio-Stimulant to Develop a Safe and Sustainable Agriculture. Microorganisms 2023; 11:1821. [PMID: 37512993 PMCID: PMC10385066 DOI: 10.3390/microorganisms11071821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Eighteen pesticide-degrading endophytic bacteria were isolated from the roots, stems, and leaves of healthy rice plants and identified through 16S rRNA gene sequencing. Furthermore, biochemical properties, including enzyme production, dye degradation, anti-bacterial activities, plant-growth-promoting traits, including N-fixation, P-solubilization, auxin production, and ACC-deaminase activities of these naturally occurring endophytic bacteria along with their four consortia, were characterized. Enterobacter cloacae HSTU-ABk39 and Enterobacter sp. HSTU-ABk36 displayed inhibition zones of 41.5 ± 1.5 mm, and 29 ± 09 mm against multidrug-resistant human pathogenic bacteria Staphylococcus aureus and Staphylococcus epidermidis, respectively. FT-IR analysis revealed that all eighteen isolates were able to degrade chlorpyrifos pesticide. Our study confirms that pesticide-degrading endophytic bacteria from rice plants play a key role in enhancing plant growth. Notably, rice plants grown in pots containing reduced urea (30%) mixed with either endophytic bacterial consortium-1, consortium-2, consortium-3, or consortia-4 demonstrated an increase of 17.3%, 38.6%, 18.2%, and 39.1% yields, respectively, compared to the control plants grown in pots containing 100% fertilizer. GC-MS/MS analysis confirmed that consortia treatment caused the degradation of chlorpyrifos into different non-toxic metabolites, including 2-Hydroxy-3,5,6 trichloropyridine, Diethyl methane phosphonate, Phorate sulfoxide, and Carbonochloridic. Thus, these isolates could be deployed as bio-stimulants to improve crop production by creating a sustainable biological system.
Collapse
Affiliation(s)
- Md Yeasin Prodhan
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Bokhtiar Rahman
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Services (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Mst Nur-E-Nazmun Nahar
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Simo
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Shamsuzzoha
- Department of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kye Man Cho
- Department of Green Bio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
10
|
Azar N, Liarzi O, Zavitan M, Samara M, Nasser A, Ezra D. Endophytic Penicillium species secretes mycophenolic acid that inhibits the growth of phytopathogenic fungi. Microb Biotechnol 2023. [PMID: 36700385 PMCID: PMC10364310 DOI: 10.1111/1751-7915.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
The worldwide demand for reduced and restricted use of pesticides in agriculture due to serious environmental effects, health risks and the development of pathogen resistance calls for the discovery of new bioactive compounds. In the medical field, antibiotic-resistant microorganisms have become a major threat to man, increasing mortality. Endophytes are endosymbiotic microorganisms that inhabit plant tissues without causing any visible damage to their host. Many endophytes secrete secondary metabolites with biological activity against a broad range of pathogens, making them potential candidates for novel drugs and alternative pesticides of natural origin. We isolated endophytes from wild plants in Israel, focusing on endophytes that secrete secondary metabolites with biological activity. We isolated 302 different endophytes from 30 different wild plants; 70 of them exhibited biological activity against phytopathogens. One biologically active fungal endophyte from the genus Penicillium, isolated from a squill (Urginea maritima) leaf, was further examined. Chloroform-based extraction of its growth medium was similarly active against phytopathogens. High-performance liquid chromatography separation followed by gas chromatography/mass spectrometry analysis revealed a single compound-mycophenolic acid-as the main contributor to the biological activity of the organic extract.
Collapse
Affiliation(s)
- Neri Azar
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Orna Liarzi
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Maor Zavitan
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Mohamed Samara
- Institute of Soils, Water and Environmental Sciences, ARO - the Volcani Center, Rishon LeZion, Israel
| | - Ahmed Nasser
- Institute of Soils, Water and Environmental Sciences, ARO - the Volcani Center, Rishon LeZion, Israel
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO - the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|