Yan W, Wang Z, Pei Y, Zhou B. Adaptive responses of eelgrass (Zostera marina L.) to ocean warming and acidification.
PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024;
206:108257. [PMID:
38064900 DOI:
10.1016/j.plaphy.2023.108257]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
Ocean warming (OW) and ocean acidification (OA), driven by rapid global warming accelerating at unprecedented rates, are profoundly impacting the stability of seagrass ecosystems. Yet, our current understanding of the effects of OW and OA on seagrass remains constrained. Herein, we investigated the response of eelgrass (Zostera marina L.), a representative seagrass species, to OW and OA through comprehensive transcriptomic and metabolomic analyses. The results showed notable variations in plant performance under varying conditions: OW, OA, and OWA (a combination of both conditions). Specifically, under average oceanic temperature conditions for eelgrass growth over the past 20 years -from May to November-OA promoted the production of differentially expressed genes and metabolites associated with alanine, aspartate, and glutamate metabolism, as well as starch and sucrose metabolism. Under warming condition, eelgrass was resistant to OA by accelerating galactose metabolism, along with glycine, serine, and threonine metabolism, as well as the tricarboxylic acid (TCA) cycle. Under the combined OW and OA condition, eelgrass stimulated fructose and mannose metabolism, glycolysis, and carbon fixation, in addition to galactose metabolism and the TCA cycle to face the interplay. Our findings suggest that eelgrass exhibits adaptive capacity by inducing different metabolites and associated genes, primarily connected with carbon and nitrogen metabolism, in response to varying degrees of OW and OA. The data generated here support the exploration of mechanisms underlying seagrass responses to environmental fluctuations, which hold critical significance for the future conservation and management of these ecosystems.
Collapse