1
|
Radouane N, Errafii K, Mouhib S, Mhand KA, Legeay J, Hijri M. Potential Plant-To-Plant Transmission: Shared Endophytic Bacterial Community Between Ziziphus lotus and Its Parasite Cuscuta epithymum. MICROBIAL ECOLOGY 2024; 87:119. [PMID: 39340548 PMCID: PMC11438670 DOI: 10.1007/s00248-024-02421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/29/2024] [Indexed: 09/30/2024]
Abstract
Microbiota associated with host-parasite relationships offer an opportunity to explore interactions among plants, parasites, and microbes, thereby contributing to the overall complexity of community structures. The dynamics of ecological interactions between parasitic plants and their hosts in arid environments remain largely understudied, especially in Africa. This study aimed to examine the bacterial communities of Cuscuta epithymum L. (clover dodder), an epiphytic parasitic plant, and its host, Ziziphus lotus L. (jujuba), in an arid environment. Our goal was to uncover the ecological complexities of microbial communities within the framework of plant-plant interactions. We conducted a comprehensive analysis of the bacterial composition and diversity within populations of the C. epithymum parasite, the infected- and non-infected jujuba host, and their interface at the shoots of the host. This involved amplicon sequencing, targeting the V5-V6 regions of the 16S rRNA gene. A total of 5680 amplicon sequence variants (ASVs) were identified, with Pseudomonadota, Bacillota, and Actinobacteriota being prevalent phyla. Among the bacterial communities, three genera were dominant: Cutibacterium, Staphylococcus, and Acinetobacter. Interestingly, analyses of alpha-diversity (p = 0.3 for Shannon index and p = 0.5 for Simplon index) and beta-diversity (PERMANOVA, with p-values of 0.6 and 0.3) revealed no significant differences between Cuscuta-infected and non-infected jujube shrubs, suggesting a shared shoot endophytic bacteriome. This finding advances our comprehension of microbial communities linked to plant-parasite interactions in the arid environments of Africa. Further research on various hosts is required to confirm plant-to-plant bacterial transmission through Cuscuta infection. Additionally, studies on functional diversity, cytology, ecophysiology and the mechanisms by which bacterial communities transferred between host and parasite are necessary.
Collapse
Affiliation(s)
- Nabil Radouane
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Khaoula Errafii
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Salma Mouhib
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Khadija Ait Mhand
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Jean Legeay
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Hijri
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, Canada.
| |
Collapse
|
2
|
Kumar A, Solanki MK, Wang Z, Solanki AC, Singh VK, Divvela PK. Revealing the seed microbiome: Navigating sequencing tools, microbial assembly, and functions to amplify plant fitness. Microbiol Res 2024; 279:127549. [PMID: 38056172 DOI: 10.1016/j.micres.2023.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
Microbial communities within seeds play a vital role in transmitting themselves to the next generation of plants. These microorganisms significantly impact seed vigor and early seedling growth, for successful crop establishment. Previous studies reported on seed-associated microbial communities and their influence on processes like dormancy release, germination, and disease protection. Modern sequencing and conventional methods reveal microbial community structures and environmental impacts, these information helps in microbial selection and manipulation. These studies form the foundation for using seed microbiomes to enhance crop resilience and productivity. While existing research has primarily focused on characterizing microbiota in dried mature seeds, a significant gap exists in understanding how these microbial communities assemble during seed development. The review also discusses applying seed-associated microorganisms to improve crops in the context of climate change. However, limited knowledge is available about the microbial assembly pattern on seeds, and their impact on plant growth. The review provides insight into microbial composition, functions, and significance for plant health, particularly regarding growth promotion and pest control.
Collapse
Affiliation(s)
- Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Anjali Chandrol Solanki
- Department of Agriculture, Mansarover Global University, Bhopal, Madhya Pradesh 462042, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, Uttar Pradesh, India
| | | |
Collapse
|