1
|
Liang Q, Tan D, Chen H, Guo X, Afzal M, Wang X, Tan Z, Peng G. Endophyte-mediated enhancement of salt resistance in Arachis hypogaea L. by regulation of osmotic stress and plant defense-related genes. Front Microbiol 2024; 15:1383545. [PMID: 38846577 PMCID: PMC11153688 DOI: 10.3389/fmicb.2024.1383545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Soil salinization poses a significant environmental challenge affecting plant growth and agricultural sustainability. This study explores the potential of salt-tolerant endophytes to mitigate the adverse effects of soil salinization, emphasizing their impact on the development and resistance of Arachis hypogaea L. (peanuts). Methods The diversity of culturable plant endophytic bacteria associated with Miscanthus lutarioriparius was investigated. The study focused on the effects of Bacillus tequilensis, Staphylococcus epidermidis, and Bacillus siamensis on the development and germination of A. hypogaea seeds in pots subjected to high NaCl concentrations (200 mM L-1). Results Under elevated NaCl concentrations, the inoculation of endophytes significantly (p < 0.05) enhanced seedling germination and increased the activities of enzymes such as Superoxide dismutase, catalase, and polyphenol oxidase, while reducing malondialdehyde and peroxidase levels. Additionally, endophyte inoculation resulted in increased root surface area, plant height, biomass contents, and leaf surface area of peanuts under NaCl stress. Transcriptome data revealed an augmented defense and resistance response induced by the applied endophyte (B. tequilensis, S. epidermidis, and B. siamensis) strain, including upregulation of abiotic stress related mechanisms such as fat metabolism, hormones, and glycosyl inositol phosphorylceramide (Na+ receptor). Na+ receptor under salt stress gate Ca2+ influx channels in plants. Notably, the synthesis of secondary metabolites, especially genes related to terpene and phenylpropanoid pathways, was highly regulated. Conclusion The inoculated endophytes played a possible role in enhancing salt tolerance in peanuts. Future investigations should explore protein-protein interactions between plants and endophytes to unravel the mechanisms underlying endophyte-mediated salt resistance in plants.
Collapse
Affiliation(s)
- Qihua Liang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Dedong Tan
- University of South China, Hengyang, China
| | - Haohai Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xiaoli Guo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guixiang Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Gao H, Ma J, Zhao Y, Zhang C, Zhao M, He S, Sun Y, Fang X, Chen X, Ma K, Pang Y, Gu Y, Dongye Y, Wu J, Xu P, Zhang S. The MYB Transcription Factor GmMYB78 Negatively Regulates Phytophthora sojae Resistance in Soybean. Int J Mol Sci 2024; 25:4247. [PMID: 38673832 PMCID: PMC11050205 DOI: 10.3390/ijms25084247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome analysis of GmAP2-overexpressing transgenic hairy roots. Here, GmMYB78 was significantly induced by P. sojae in susceptible soybean, and the overexpressing of GmMYB78 enhanced sensitivity to the pathogen, while silencing GmMYB78 enhances resistance to P. sojae, indicating that GmMYB78 is a negative regulator of P. sojae. Moreover, the jasmonic acid (JA) content and JA synthesis gene GmAOS1 was highly upregulated in GmMYB78-silencing roots and highly downregulated in overexpressing ones, suggesting that GmMYB78 could respond to P. sojae through the JA signaling pathway. Furthermore, the expression of several pathogenesis-related genes was significantly lower in GmMYB78-overexpressing roots and higher in GmMYB78-silencing ones. Additionally, we screened and identified the upstream regulator GmbHLH122 and downstream target gene GmbZIP25 of GmMYB78. GmbHLH122 was highly induced by P. sojae and could inhibit GmMYB78 expression in resistant soybean, and GmMYB78 was highly expressed to activate downstream target gene GmbZIP25 transcription in susceptible soybean. In conclusion, our data reveal that GmMYB78 triggers soybean sensitivity to P. sojae by inhibiting the JA signaling pathway and the expression of pathogenesis-related genes or through the effects of the GmbHLH122-GmMYB78-GmbZIP25 cascade pathway.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Jia Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yuxin Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Chuanzhong Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Ming Zhao
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Shengfu He
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yan Sun
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Xin Fang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Xiaoyu Chen
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Kexin Ma
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yanjie Pang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yachang Gu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Yaqun Dongye
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Harbin 150030, China;
| | - Pengfei Xu
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; (H.G.); (J.M.); (Y.Z.); (C.Z.); (M.Z.); (S.H.); (Y.S.); (X.F.); (X.C.); (K.M.); (Y.P.); (Y.G.); (Y.D.)
| |
Collapse
|
3
|
Chen N, Zhan W, Shao Q, Liu L, Lu Q, Yang W, Que Z. Cloning, Expression, and Functional Analysis of the MYB Transcription Factor SlMYB86-like in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:488. [PMID: 38498460 PMCID: PMC10893056 DOI: 10.3390/plants13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
MYB transcription factors (TFs) have been shown to play a key role in plant growth and development and are in response to various types of biotic and abiotic stress. Here, we clarified the structure, expression patterns, and function of a MYB TF, SlMYB86-like (Solyc06g071690) in tomato using an inbred tomato line exhibiting high resistance to bacterial wilt (Hm 2-2 (R)) and one susceptible line (BY 1-2 (S)). The full-length cDNA sequence of this gene was 1226 bp, and the open reading frame was 966 bp, which encoded 321 amino acids; its relative molecular weight was 37.05055 kDa; its theoretical isoelectric point was 7.22; it was a hydrophilic nonsecreted protein; and it had no transmembrane structures. The protein also contains a highly conserved MYB DNA-binding domain and was predicted to be localized to the nucleus. Phylogenetic analysis revealed that SlMYB86-like is closely related to SpMYB86-like in Solanum pennellii and clustered with other members of the family Solanaceae. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of the SlMYB86-like gene was tissue specific and could be induced by Ralstonia solanacearum, salicylic acid, and jasmonic acid. The results of virus-induced gene silencing (VIGS) revealed that SlMYB86-like silencing decreased the resistance of tomato plants to bacterial wilt, suggesting that it positively regulates the resistance of tomatoes to bacterial wilt. Overall, these findings indicate that SlMYB86-like plays a key role in regulating the resistance of tomatoes to bacterial wilt.
Collapse
Affiliation(s)
- Na Chen
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Wenwen Zhan
- Guangzhou Resuce Agricultural Science and Technology Co., Ltd., Guangzhou 510642, China;
| | - Qin Shao
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Liangliang Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Qineng Lu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Weihai Yang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| | - Zhiqun Que
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (Q.S.); (L.L.); (Q.L.); (W.Y.); (Z.Q.)
| |
Collapse
|
4
|
Lu M, Chen Z, Dang Y, Li J, Wang J, Zheng H, Li S, Wang X, Du X, Sui N. Identification of the MYB gene family in Sorghum bicolor and functional analysis of SbMYBAS1 in response to salt stress. PLANT MOLECULAR BIOLOGY 2023; 113:249-264. [PMID: 37964053 DOI: 10.1007/s11103-023-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
Salt stress adversely affects plant growth and development. It is necessary to understand the underlying salt response mechanism to improve salt tolerance in plants. MYB transcription factors can regulate plant responses to salt stress. However, only a few studies have explored the role of MYB TFs in Sorghum bicolor (L.) Moench. So we decided to make a systematic analysis and research on the sorghum MYB family. A total of 210 MYB genes in sorghum were identified in this study. Furthermore, 210 MYB genes were distributed across ten chromosomes, named SbMYB1-SbMYB210. To study the phylogeny of the identified TFs, 210 MYB genes were divided into six subfamilies. We further demonstrated that SbMYB genes have evolved under strong purifying selection. SbMYBAS1 (SbMYB119) was chosen as the study object, which the expression decreased under salt stress conditions. Further study of the SbMYBAS1 showed that SbMYBAS1 is located in the nucleus. Under salt stress conditions, Arabidopsis plants overexpressed SbMYBAS1 showed significantly lower dry/fresh weight and chlorophyll content but significantly higher membrane permeability, MDA content, and Na+/K+ ratio than the wild-type Arabidopsis plants. Yeast two-hybrid screening result showed that SbMYBAS1 might interact with proteins encoded by SORBI_302G184600, SORBI_3009G247900 and SORBI_3004G59600. Results also showed that SbMYBAS1 could regulate the expression of AtGSTU17, AtGSTU16, AtP5CS2, AtUGT88A1, AtUGT85A2, AtOPR2 and AtPCR2 under salt stress conditions. This work laid a foundation for the study of the response mechanism of sorghum MYB gene family to salt stress.
Collapse
Affiliation(s)
- Mei Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
5
|
Lu P, Dai SY, Yong LT, Zhou BH, Wang N, Dong YY, Liu WC, Wang FW, Yang HY, Li XW. A Soybean Sucrose Non-Fermenting Protein Kinase 1 Gene, GmSNF1, Positively Regulates Plant Response to Salt and Salt-Alkali Stress in Transgenic Plants. Int J Mol Sci 2023; 24:12482. [PMID: 37569858 PMCID: PMC10419833 DOI: 10.3390/ijms241512482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Soybean is one of the most widely grown oilseed crops worldwide. Several unfavorable factors, including salt and salt-alkali stress caused by soil salinization, affect soybean yield and quality. Therefore, exploring the molecular basis of salt tolerance in plants and developing genetic resources for genetic breeding is important. Sucrose non-fermentable protein kinase 1 (SnRK1) belongs to a class of Ser/Thr protein kinases that are evolutionarily highly conserved direct homologs of yeast SNF1 and animal AMPKs and are involved in various abiotic stresses in plants. The GmPKS4 gene was experimentally shown to be involved with salinity tolerance. First, using the yeast two-hybrid technique and bimolecular fluorescence complementation (BiFC) technique, the GmSNF1 protein was shown to interact with the GmPKS4 protein. Second, the GmSNF1 gene responded positively to salt and salt-alkali stress according to qRT-PCR analysis, and the GmSNF1 protein was localized in the nucleus and cytoplasm using subcellular localization assay. The GmSNF1 gene was then heterologously expressed in yeast, and the GmSNF1 gene was tentatively identified as having salt and salt-alkali tolerance function. Finally, the salt-alkali tolerance function of the GmSNF1 gene was demonstrated by transgenic Arabidopsis thaliana, soybean hairy root complex plants overexpressing GmSNF1 and GmSNF1 gene-silenced soybean using VIGS. These results indicated that GmSNF1 might be useful in genetic engineering to improve plant salt and salt-alkali tolerance.
Collapse
Affiliation(s)
- Ping Lu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Si-Yu Dai
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Ling-Tao Yong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Bai-Hui Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Yuan-Yuan Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Wei-Can Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Fa-Wei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| | - Hao-Yu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiao-Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; (P.L.); (S.-Y.D.); (L.-T.Y.); (B.-H.Z.); (N.W.); (Y.-Y.D.); (W.-C.L.); (F.-W.W.)
| |
Collapse
|
6
|
Pooam M, El-Ballat EM, Jourdan N, Ali HM, Hano C, Ahmad M, El-Esawi MA. SNAC3 Transcription Factor Enhances Arsenic Stress Tolerance and Grain Yield in Rice ( Oryza sativa L.) through Regulating Physio-Biochemical Mechanisms, Stress-Responsive Genes, and Cryptochrome 1b. PLANTS (BASEL, SWITZERLAND) 2023; 12:2731. [PMID: 37514345 PMCID: PMC10383536 DOI: 10.3390/plants12142731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Arsenic (As) is one of the toxic heavy metal pollutants found in the environment. An excess of As poses serious threats to plants and diminishes their growth and productivity. NAC transcription factors revealed a pivotal role in enhancing crops tolerance to different environmental stresses. The present study investigated, for the first time, the functional role of SNAC3 in boosting As stress tolerance and grain productivity in rice (Oryza sativa L.). Two SNAC3-overexpressing (SNAC3-OX) and two SNAC3-RNAi transgenic lines were created and validated. The wild-type and transgenic rice plants were exposed to different As stress levels (0, 25, and 50 µM). The results revealed that SNAC3 overexpression significantly improved rice tolerance to As stress and boosted grain yield traits. Under both levels of As stress (25 and 50 µM), SNAC3-OX rice lines exhibited significantly lower levels of oxidative stress biomarkers and OsCRY1b (cryptochrome 1b) expression, but they revealed increased levels of gas exchange characters, chlorophyll, osmolytes (soluble sugars, proteins, proline, phenols, and flavonoids), antioxidant enzymes (SOD, CAT, APX, and POD), and stress-tolerant genes expression (OsSOD-Cu/Zn, OsCATA, OsCATB, OsAPX2, OsLEA3, OsDREB2B, OsDREB2A, OsSNAC2, and OsSNAC1) in comparison to wild-type plants. By contrast, SNAC3 suppression (RNAi) reduced grain yield components and reversed the aforementioned measured physio-biochemical and molecular traits. Taken together, this study is the first to demonstrate that SNAC3 plays a vital role in boosting As stress resistance and grain productivity in rice through modulating antioxidants, photosynthesis, osmolyte accumulation, and stress-related genes expression, and may be a useful candidate for further genetic enhancement of stress resistance in many crops.
Collapse
Affiliation(s)
- Marootpong Pooam
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Enas M El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nathalie Jourdan
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 45067 Orleans, France
| | - Margaret Ahmad
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Mohamed A El-Esawi
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
7
|
Tian Y, Peng K, Ma X, Ren Z, Lou G, Jiang Y, Xia J, Wang D, Yu J, Cang J. Overexpression of TaMYB4 Confers Freezing Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:11090. [PMID: 37446268 DOI: 10.3390/ijms241311090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Freezing stress is one of the main factors limiting the growth and yield of wheat. In this study, we found that TaMYB4 expression was significantly upregulated in the tillering nodes of the strong cold-resistant winter wheat variety Dongnongdongmai1 (Dn1) under freezing stress. Weighted gene co-expression network analysis, qRT-PCR and protein-DNA interaction experiments demonstrated that monodehydroascorbate reductase (TaMDHAR) is a direct target of TaMYB4. The results showed that overexpression of TaMYB4 enhanced the freezing tolerance of transgenic Arabidopsis. In TaMYB4 overexpression lines (OE-TaMYB4), AtMDHAR2 expression was upregulated and ascorbate-glutathione (AsA-GSH) cycle operation was enhanced. In addition, the expression of cold stress marker genes such as AtCBF1, AtCBF2, AtCBF3, AtCOR15A, AtCOR47, AtKIN1 and AtRD29A in OE-TaMYB4 lines was significantly upregulated. Therefore, TaMYB4 may increase freezing tolerance as a transcription factor (TF) in Arabidopsis through the AsA-GSH cycle and DREB/CBF signaling pathway. This study provides a potential gene for molecular breeding against freezing stress.
Collapse
Affiliation(s)
- Yu Tian
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kankan Peng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Ma
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhipeng Ren
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Lou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunshuang Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingqiu Xia
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Duojia Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Liu G, Rui L, Yang Y, Liu R, Li H, Ye F, You C, Zhang S. Identification and Functional Characterization of MdNRT1.1 in Nitrogen Utilization and Abiotic Stress Tolerance in Malus domestica. Int J Mol Sci 2023; 24:ijms24119291. [PMID: 37298242 DOI: 10.3390/ijms24119291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Nitrate is one of the main sources of nitrogen for plant growth. Nitrate transporters (NRTs) participate in nitrate uptake and transport, and they are involved in abiotic stress tolerance. Previous studies have shown that NRT1.1 has a dual role in nitrate uptake and utilization; however, little is known about the function of MdNRT1.1 in regulating apple growth and nitrate uptake. In this study, apple MdNRT1.1, a homolog of Arabidopsis NRT1.1, was cloned and functionally identified. Nitrate treatment induced an increased transcript level of MdNRT1.1, and overexpression of MdNRT1.1 promoted root development and nitrogen utilization. Ectopic expression of MdNRT1.1 in Arabidopsis repressed tolerance to drought, salt, and ABA stresses. Overall, this study identified a nitrate transporter, MdNRT1.1, in apples and revealed how MdNRT1.1 regulates nitrate utilization and abiotic stress tolerance.
Collapse
Affiliation(s)
- Guodong Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuying Yang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Ranxin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hongliang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Fan Ye
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|