1
|
Gan J, Qiu Y, Tao Y, Zhang L, Okita TW, Yan Y, Tian L. RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. FRONTIERS IN PLANT SCIENCE 2024; 15:1394223. [PMID: 38966147 PMCID: PMC11222332 DOI: 10.3389/fpls.2024.1394223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.
Collapse
Affiliation(s)
- Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yongqi Qiu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wang F, Zhou Z, Liu X, Zhu L, Guo B, Lv C, Zhu J, Chen ZH, Xu R. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley. BMC PLANT BIOLOGY 2024; 24:385. [PMID: 38724918 PMCID: PMC11080113 DOI: 10.1186/s12870-024-05091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.
Collapse
Affiliation(s)
- Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Zhenxiang Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohui Liu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Liang Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Institutes of Agricultural Science, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Yang J, Chen R, Liu W, Xiang X, Fan C. Genome-Wide Characterization and Phylogenetic and Stress Response Expression Analysis of the MADS-Box Gene Family in Litchi ( Litchi chinensis Sonn.). Int J Mol Sci 2024; 25:1754. [PMID: 38339030 PMCID: PMC10855657 DOI: 10.3390/ijms25031754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The MADS-box protein is an important transcription factor in plants and plays an important role in regulating the plant abiotic stress response. In this study, a total of 94 MADS-box genes were predicted in the litchi genome, and these genes were widely distributed on all the chromosomes. The LcMADS-box gene family was divided into six subgroups (Mα, Mβ, Mγ, Mδ, MIKC, and UN) based on their phylogenetical relationships with Arabidopsis, and the closely linked subgroups exhibited more similarity in terms of motif distribution and intron/exon numbers. Transcriptome analysis indicated that LcMADS-box gene expression varied in different tissues, which can be divided into universal expression and specific expression. Furthermore, we further validated that LcMADS-box genes can exhibit different responses to various stresses using quantitative real-time PCR (qRT-PCR). Moreover, physicochemical properties, subcellular localization, collinearity, and cis-acting elements were also analyzed. The findings of this study provide valuable insights into the MADS-box gene family in litchi, specifically in relation to stress response. The identification of hormone-related and stress-responsive cis-acting elements in the MADS-box gene promoters suggests their involvement in stress signaling pathways. This study contributes to the understanding of stress tolerance mechanisms in litchi and highlights potential regulatory mechanisms underlying stress responses.
Collapse
Affiliation(s)
| | | | | | | | - Chao Fan
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.)
| |
Collapse
|