1
|
Yang Z, Gu J, Zhao M, Fan X, Guo H, Xie Y, Zhang J, Xiong H, Zhao L, Zhao S, Ding Y, Kong F, Sui L, Xu L, Liu L. Genetic Analysis and Fine Mapping of QTL for the Erect Leaf in Mutant mths29 Induced through Fast Neutron in Wheat. BIOLOGY 2024; 13:430. [PMID: 38927310 PMCID: PMC11201221 DOI: 10.3390/biology13060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The erect leaf plays a crucial role in determining plant architecture, with its growth and development regulated by genetic factors. However, there has been a lack of comprehensive studies on the regulatory mechanisms governing wheat lamina joint development, thus failing to meet current breeding demands. In this study, a wheat erect leaf mutant, mths29, induced via fast neutron mutagenesis, was utilized for QTL fine mapping and investigation of lamina joint development. Genetic analysis of segregating populations derived from mths29 and Jimai22 revealed that the erect leaf trait was controlled by a dominant single gene. Using BSR sequencing and map-based cloning techniques, the QTL responsible for the erect leaf trait was mapped to a 1.03 Mb physical region on chromosome 5A. Transcriptome analysis highlighted differential expression of genes associated with cell division and proliferation, as well as several crucial transcription factors and kinases implicated in lamina joint development, particularly in the boundary cells of the preligule zone in mths29. These findings establish a solid foundation for understanding lamina joint development and hold promise for potential improvements in wheat plant architecture.
Collapse
Affiliation(s)
- Zhixin Yang
- College of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.Y.); (X.F.); (L.X.)
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Jiayu Gu
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Minghui Zhao
- Dry-Land Farming Institute of Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, China
| | - Xiaofeng Fan
- College of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.Y.); (X.F.); (L.X.)
| | - Huijun Guo
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Yongdun Xie
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Jinfeng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Hongchun Xiong
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Linshu Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Shirong Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Yuping Ding
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Fuquan Kong
- China Institute of Atomic Energy, Beijing 102413, China; (F.K.); (L.S.)
| | - Li Sui
- China Institute of Atomic Energy, Beijing 102413, China; (F.K.); (L.S.)
| | - Le Xu
- College of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.Y.); (X.F.); (L.X.)
| | - Luxiang Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| |
Collapse
|
2
|
Sahito JH, Zhang H, Gishkori ZGN, Ma C, Wang Z, Ding D, Zhang X, Tang J. Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize. Int J Mol Sci 2024; 25:1918. [PMID: 38339196 PMCID: PMC10855973 DOI: 10.3390/ijms25031918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Genome-wide association studies (GWAS) have emerged as a powerful tool for unraveling intricate genotype-phenotype association across various species. Maize (Zea mays L.), renowned for its extensive genetic diversity and rapid linkage disequilibrium (LD), stands as an exemplary candidate for GWAS. In maize, GWAS has made significant advancements by pinpointing numerous genetic loci and potential genes associated with complex traits, including responses to both abiotic and biotic stress. These discoveries hold the promise of enhancing adaptability and yield through effective breeding strategies. Nevertheless, the impact of environmental stress on crop growth and yield is evident in various agronomic traits. Therefore, understanding the complex genetic basis of these traits becomes paramount. This review delves into current and future prospectives aimed at yield, quality, and environmental stress resilience in maize and also addresses the challenges encountered during genomic selection and molecular breeding, all facilitated by the utilization of GWAS. Furthermore, the integration of omics, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics has enriched our understanding of intricate traits in maize, thereby enhancing environmental stress tolerance and boosting maize production. Collectively, these insights not only advance our understanding of the genetic mechanism regulating complex traits but also propel the utilization of marker-assisted selection in maize molecular breeding programs, where GWAS plays a pivotal role. Therefore, GWAS provides robust support for delving into the genetic mechanism underlying complex traits in maize and enhancing breeding strategies.
Collapse
Affiliation(s)
- Javed Hussain Sahito
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zeeshan Ghulam Nabi Gishkori
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenhui Ma
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|