1
|
Akram W, Khan I, Rehman A, Munir B, Guo J, Li G. A Physiological and Molecular Docking Insight on Quercetin Mediated Salinity Stress Tolerance in Chinese Flowering Cabbage and Increase in Glucosinolate Contents. PLANTS (BASEL, SWITZERLAND) 2024; 13:1698. [PMID: 38931131 PMCID: PMC11207431 DOI: 10.3390/plants13121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The present study was performed to investigate the negative impact of salinity on the growth of Chinese flowering cabbage (Brassica rapa ssp. chinensis var. parachinensis) and the ameliorative effects of quercetin dihydrate on the plant along with the elucidation of underlying mechanisms. The tolerable NaCl stress level was initially screened for the Chinese flowering cabbage plants during a preliminary pot trial by exposing the plants to salinity levels (0, 50, 100, 150, 200, 250, 300, 350, and 400 mM) and 250 mM was adopted for further experimentation based on the findings. The greenhouse experiment was performed by adopting a completely randomized design using three different doses of quercetin dihydrate (50, 100, 150 µM) applied as a foliar treatment. The findings showed that the exposure salinity significantly reduced shoot length (46.5%), root length (21.2%), and dry biomass (32.1%) of Chinese flowering cabbage plants. Whereas, quercetin dihydrate applied at concentrations of 100, and 150 µM significantly diminished the effect of salinity stress by increasing shoot length (36.8- and 71.3%), root length (36.57- and 56.19%), dry biomass production (51.4- and 78.6%), Chl a (69.8- and 95.7%), Chl b (35.2- and 87.2%), and carotenoid contents (21.4- and 40.3%), respectively, compared to the plants cultivated in salinized conditions. The data of physiological parameters showed a significant effect of quercetin dihydrate on the activities of peroxidase, superoxide dismutase, and catalase enzymes. Interestingly, quercetin dihydrate increased the production of medicinally important glucosinolate compounds in Chinese flowering cabbage plants. Molecular docking analysis showed a strong affinity of quercetin dihydrate with three different stress-related proteins of B. rapa plants. Based on the findings, it could be concluded that quercetin dihydrate can increase the growth of Chinese flowering cabbage under both salinity and normal conditions, along with an increase in the medicinal quality of the plants. Further investigations are recommended as future perspectives using other abiotic stresses to declare quercetin dihydrate as an effective remedy to rescue plant growth under prevailing stress conditions.
Collapse
Affiliation(s)
- Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| | - Areeba Rehman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (W.A.); (I.K.)
| |
Collapse
|
2
|
Khoso MA, Wang M, Zhou Z, Huang Y, Li S, Zhang Y, Qian G, Ko SN, Pang Q, Liu C, Li L. Bacillus altitudinis AD13-4 Enhances Saline-Alkali Stress Tolerance of Alfalfa and Affects Composition of Rhizosphere Soil Microbial Community. Int J Mol Sci 2024; 25:5785. [PMID: 38891975 PMCID: PMC11171787 DOI: 10.3390/ijms25115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Saline and alkaline stresses limit plant growth and reduce crop yield. Soil salinization and alkalization seriously threaten the sustainable development of agriculture and the virtuous cycle of ecology. Biofertilizers made from plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth and stress tolerance, but also are environmentally friendly and cost-effective. There have been many studies on the mechanisms underlying PGPRs enhancing plant salt resistance. However, there is limited knowledge about the interaction between PGPR and plants under alkaline-sodic stress. To clarify the mechanisms underlying PGPR's improvement of plants' tolerance to alkaline-sodic stress, we screened PGPR from the rhizosphere microorganisms of local plants growing in alkaline-sodic land and selected an efficient strain, Bacillus altitudinis AD13-4, as the research object. Our results indicate that the strain AD13-4 can produce various growth-promoting substances to regulate plant endogenous hormone levels, cell division and differentiation, photosynthesis, antioxidant capacity, etc. Transcriptome analysis revealed that the strain AD13-4 significantly affected metabolism and secondary metabolism, signal transduction, photosynthesis, redox processes, and plant-pathogen interactions. Under alkaline-sodic conditions, inoculation of the strain AD13-4 significantly improved plant biomass and the contents of metabolites (e.g., soluble proteins and sugars) as well as secondary metabolites (e.g., phenols, flavonoids, and terpenoids). The 16S rRNA gene sequencing results indicated that the strain AD13-4 significantly affected the abundance and composition of the rhizospheric microbiota and improved soil activities and physiochemical properties. Our study provides theoretical support for the optimization of saline-alkali-tolerant PGPR and valuable information for elucidating the mechanism of plant alkaline-sodic tolerance.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Zhenzhen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Yongxue Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Song Nam Ko
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Changli Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| |
Collapse
|
3
|
Pasternak TP, Steinmacher D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. PLANTS (BASEL, SWITZERLAND) 2024; 13:327. [PMID: 38276784 PMCID: PMC10818547 DOI: 10.3390/plants13020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Precise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for this scientific knowledge, resulting in more productive and resilient plants in the field. However, the development and application of cell and tissue culture techniques are usually based on empirical studies, although some data-driven models are available. Overall, the success of plant tissue culture is dependent on several factors such as available nutrients, endogenous auxin synthesis, organic compounds, and environment conditions. In this review, the most important aspects are described one by one, with some practical recommendations based on basic research in plant physiology and sharing our practical experience from over 20 years of research in this field. The main aim is to help new plant biotechnologists and increase the impact of the plant tissue culture industry worldwide.
Collapse
Affiliation(s)
- Taras P. Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | | |
Collapse
|