Alshareef SA. Metabolic analysis of the CAZy class glycosyltransferases in rhizospheric soil fungiome of the plant species
Moringa oleifera.
Saudi J Biol Sci 2024;
31:103956. [PMID:
38404538 PMCID:
PMC10891331 DOI:
10.1016/j.sjbs.2024.103956]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The target of the present work is to study the most abundant carbohydrate-active enzymes (CAZymes) of glycosyltransferase (GT) class, which are encoded by fungiome genes present in the rhizospheric soil of the plant species Moringa oleifera. The datasets of this CAZy class were recovered using metagenomic whole shotgun genome sequencing approach, and the resultant CAZymes were searched against the KEGG pathway database to identify function. High emphasis was given to the two GT families, GT4 and GT2, which were the highest within GT class in the number and abundance of gene queries in this soil compartment. These two GT families harbor CAZymes playing crucial roles in cell membrane and cell wall processes. These CAZymes are responsible for synthesizing essential structural components such as cellulose and chitin, which contribute to the integrity of cell walls in plants and fungi. The CAZyme beta-1,3-glucan synthase of GT2 family accumulates 1,3-β-glucan, which provides elasticity as well as tensile strength to the fungal cell wall. Other GT CAZymes contribute to the biosynthesis of several compounds crucial for cell membrane and wall integrity, including lipopolysaccharide, e.g., lipopolysaccharide N-acetylglucosaminyltransferase, cell wall teichoic acid, e.g., alpha-glucosyltransferase, and cellulose, e.g., cellulose synthase. These compounds also play pivotal roles in ion homeostasis, organic carbon mineralization, and osmoprotection against abiotic stresses in plants. This study emphasizes the major roles of these two CAZy GT families in connecting the structure and function of cell membranes and cell walls of fungal and plant cells. The study also sheds light on the potential occurrence of tripartite symbiotic relationships involving the plant, rhizospheric bacteriome, and fungiome via the action of CAZymes of GT4 and GT2 families. These findings provide valuable insights towards the generation of innovative agricultural practices to enhance the performance of crop plants in the future.
Collapse