1
|
Isidra-Arellano MC, Valdés-López O. Understanding the Crucial Role of Phosphate and Iron Availability in Regulating Root Nodule Symbiosis. PLANT & CELL PHYSIOLOGY 2024; 65:1925-1936. [PMID: 39460549 DOI: 10.1093/pcp/pcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
The symbiosis between legumes and nitrogen-fixing bacteria (rhizobia) is instrumental in sustaining the nitrogen cycle and providing fixed nitrogen to the food chain. Both partners must maintain an efficient nutrient exchange to ensure a successful symbiosis. This mini-review highlights the intricate phosphate and iron uptake and homeostasis processes taking place in legumes during their interactions with rhizobia. The coordination of transport and homeostasis of these nutrients in host plants and rhizobia ensures an efficient nitrogen fixation process and nutrient use. We discuss the genetic machinery controlling the uptake and homeostasis of these nutrients in the absence of rhizobia and under symbiotic conditions with this soil bacterium. We also highlight the genetic impact of the availability of phosphate and iron to coordinate the activation of the genetic programs that allow legumes to engage in symbiosis with rhizobia. Finally, we discuss how the transcription factor phosphate starvation response might be a crucial genetic element to integrate the plant's needs of nitrogen, iron and phosphate while interacting with rhizobia. Understanding the coordination of the iron and phosphate uptake and homeostasis can lead us to better harness the ecological benefits of the legume-rhizobia symbiosis, even under adverse environmental conditions.
Collapse
Affiliation(s)
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Department of Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México
| |
Collapse
|
2
|
Pedinotti L, Teyssendier de la Serve J, Roudaire T, San Clemente H, Aguilar M, Kohlen W, Frugier F, Frei Dit Frey N. The CEP peptide-CRA2 receptor module promotes arbuscular mycorrhizal symbiosis. Curr Biol 2024; 34:5366-5373.e4. [PMID: 39437785 DOI: 10.1016/j.cub.2024.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
C-terminally encoded peptides (CEPs) are small secreted signaling peptides that promote nitrogen-fixing root nodulation symbiosis in legumes, depending on soil mineral nitrogen availability.1 In Medicago truncatula, their action is mediated by the leucine-rich repeat receptor-like protein kinase COMPACT ROOT ARCHITECTURE 2 (CRA2).2,3,4 Like most land plants, under inorganic phosphate limitation, M. truncatula establishes another root endosymbiotic interaction with arbuscular fungi, the arbuscular mycorrhizal symbiosis (AMS). Because this interaction is beneficial for the plant but has a high energetic cost, it is tightly controlled by host plants to limit fungal infections mainly depending on phosphate availability.5 We show in this study that the expression of a subset of CEP-encoding genes is enhanced in the low-phosphate conditions and that overexpression of the low-phosphate-induced MtCEP1 gene, previously shown to promote the nitrogen-fixing root nodulation symbiosis, enhances AMS from the initial entry point of the fungi. Conversely, a loss-of-function mutation of the CRA2 receptor required for mediating CEP peptide action2 decreases the endomycorrhizal interaction from the same initial fungal entry stage. Transcriptomic analyses revealed that the cra2 mutant is negatively affected in the regulation of key phosphate transport and response genes as well as in the biosynthesis of strigolactone hormones that are required for establishing AMS. Accordingly, strigolactone contents were drastically decreased in cra2 mutant roots. Overall, we showed that the CEP/CRA2 pathway promotes both root nodulation and AMS in legume plants, depending on soil mineral nutrient availability.
Collapse
Affiliation(s)
- Léa Pedinotti
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Juliette Teyssendier de la Serve
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France; Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Thibault Roudaire
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, 31320 Castanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| | - Florian Frugier
- Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France.
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France.
| |
Collapse
|
3
|
Argirò L, Laffont C, Moreau C, Moreau C, Su Y, Pervent M, Parrinello H, Blein T, Kohlen W, Lepetit M, Frugier F. The Compact Root Architecture 2 systemic pathway is required for the repression of cytokinins and miR399 accumulation in Medicago truncatula N-limited plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5667-5680. [PMID: 38941269 DOI: 10.1093/jxb/erae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
Legume plants can acquire mineral nitrogen (N) either through their roots or via a symbiotic interaction with N-fixing rhizobia bacteria housed in root nodules. To identify shoot-to-root systemic signals acting in Medicago truncatula plants at N deficit or N satiety, plants were grown in a split-root experimental design in which either high or low N was provided to half of the root system, allowing the analysis of systemic pathways independently of any local N response. Among the plant hormone families analyzed, the cytokinin trans-zeatin accumulated in plants at N satiety. Cytokinin application by petiole feeding led to inhibition of both root growth and nodulation. In addition, an exhaustive analysis of miRNAs revealed that miR2111 accumulates systemically under N deficit in both shoots and non-treated distant roots, whereas a miRNA related to inorganic phosphate (Pi) acquisition, miR399, accumulates in plants grown under N satiety. These two accumulation patterns are dependent on Compact Root Architecture 2 (CRA2), a receptor required for C-terminally Encoded Peptide (CEP) signaling. Constitutive ectopic expression of miR399 reduced nodule numbers and root biomass depending on Pi availability, suggesting that the miR399-dependent Pi-acquisition regulatory module controlled by N availability affects the development of the whole legume plant root system.
Collapse
Affiliation(s)
- Luca Argirò
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Carole Laffont
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Corentin Moreau
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Carol Moreau
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Yangyang Su
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Marjorie Pervent
- Plant Health Institute of Montpellier (PHIM), INRAE, SupAgro, University of Montpellier, CIRAD, IRD, Campus de Baillarguet, 34398 Montpellier, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, 34398 Montpellier, France
| | - Thomas Blein
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Marc Lepetit
- Institute of Sophia Agrobiotech (ISA), INRAE, Université Côte d'Azur, CNRS, 06903 Sophia-Antipolis, France
| | - Florian Frugier
- Institute of Plant Sciences - Paris Saclay (IPS2), University of Paris-Saclay, CNRS, University of Paris-Cité, INRAE, Univ Evry, Bat 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Singh K, Gupta S, Singh AP. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112024. [PMID: 38325661 DOI: 10.1016/j.plantsci.2024.112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Plant growth relies on the mineral nutrients present in the rhizosphere. The distribution of nutrients in soils varies depending on their mobility and capacity to bind with soil particles. Consequently, plants often encounter either low or high levels of nutrients in the rhizosphere. Plant roots are the essential organs that sense changes in soil mineral content, leading to the activation of signaling pathways associated with the adjustment of plant architecture and metabolic responses. During differential availability of minerals in the rhizosphere, plants trigger adaptation strategies such as cellular remobilization of minerals, secretion of organic molecules, and the attenuation or enhancement of root growth to balance nutrient uptake. The interdependency, availability, and uptake of minerals, such as phosphorus (P), iron (Fe), zinc (Zn), potassium (K), nitrogen (N) forms, nitrate (NO3-), and ammonium (NH4+), modulate the root architecture and metabolic functioning of plants. Here, we summarized the interactions of major nutrients (N, P, K, Fe, Zn) in shaping root architecture, physiological responses, genetic components involved, and address the current challenges associated with nutrient-nutrient interactions. Furthermore, we discuss the major gaps and opportunities in the field for developing plants with improved nutrient uptake and use efficiency for sustainable agriculture.
Collapse
Affiliation(s)
- Kratika Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shreya Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
5
|
Botkin JR, Farmer AD, Young ND, Curtin SJ. Genome assembly of Medicago truncatula accession SA27063 provides insight into spring black stem and leaf spot disease resistance. BMC Genomics 2024; 25:204. [PMID: 38395768 PMCID: PMC10885650 DOI: 10.1186/s12864-024-10112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Medicago truncatula, model legume and alfalfa relative, has served as an essential resource for advancing our understanding of legume physiology, functional genetics, and crop improvement traits. Necrotrophic fungus, Ascochyta medicaginicola, the causal agent of spring black stem (SBS) and leaf spot is a devasting foliar disease of alfalfa affecting stand survival, yield, and forage quality. Host resistance to SBS disease is poorly understood, and control methods rely on cultural practices. Resistance has been observed in M. truncatula accession SA27063 (HM078) with two recessively inherited quantitative-trait loci (QTL), rnpm1 and rnpm2, previously reported. To shed light on host resistance, we carried out a de novo genome assembly of HM078. The genome, referred to as MtHM078 v1.0, is comprised of 23 contigs totaling 481.19 Mbp. Notably, this assembly contains a substantial amount of novel centromere-related repeat sequences due to deep long-read sequencing. Genome annotation resulted in 98.4% of BUSCO fabales proteins being complete. The assembly enabled sequence-level analysis of rnpm1 and rnpm2 for gene content, synteny, and structural variation between SBS-resistant accession SA27063 (HM078) and SBS-susceptible accession A17 (HM101). Fourteen candidate genes were identified, and some have been implicated in resistance to necrotrophic fungi. Especially interesting candidates include loss-of-function events in HM078 because they fit the inverse gene-for-gene model, where resistance is recessively inherited. In rnpm1, these include a loss-of-function in a disease resistance gene due to a premature stop codon, and a 10.85 kbp retrotransposon-like insertion disrupting a ubiquitin conjugating E2. In rnpm2, we identified a frameshift mutation causing a loss-of-function in a glycosidase, as well as a missense and frameshift mutation altering an F-box family protein. This study generated a high-quality genome of HM078 and has identified promising candidates, that once validated, could be further studied in alfalfa to enhance disease resistance.
Collapse
Affiliation(s)
- Jacob R Botkin
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Shaun J Curtin
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN, 55108, USA.
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, 55108, USA.
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|