1
|
Gillani M, Pollastri G. Protein subcellular localization prediction tools. Comput Struct Biotechnol J 2024; 23:1796-1807. [PMID: 38707539 PMCID: PMC11066471 DOI: 10.1016/j.csbj.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Protein subcellular localization prediction is of great significance in bioinformatics and biological research. Most of the proteins do not have experimentally determined localization information, computational prediction methods and tools have been acting as an active research area for more than two decades now. Knowledge of the subcellular location of a protein provides valuable information about its functionalities, the functioning of the cell, and other possible interactions with proteins. Fast, reliable, and accurate predictors provides platforms to harness the abundance of sequence data to predict subcellular locations accordingly. During the last decade, there has been a considerable amount of research effort aimed at developing subcellular localization predictors. This paper reviews recent subcellular localization prediction tools in the Eukaryotic, Prokaryotic, and Virus-based categories followed by a detailed analysis. Each predictor is discussed based on its main features, strengths, weaknesses, algorithms used, prediction techniques, and analysis. This review is supported by prediction tools taxonomies that highlight their rele- vant area and examples for uncomplicated categorization and ease of understandability. These taxonomies help users find suitable tools according to their needs. Furthermore, recent research gaps and challenges are discussed to cover areas that need the utmost attention. This survey provides an in-depth analysis of the most recent prediction tools to facilitate readers and can be considered a quick guide for researchers to identify and explore the recent literature advancements.
Collapse
Affiliation(s)
- Maryam Gillani
- School of Computer Science, University College Dublin (UCD), Dublin, D04 V1W8, Ireland
| | - Gianluca Pollastri
- School of Computer Science, University College Dublin (UCD), Dublin, D04 V1W8, Ireland
| |
Collapse
|
2
|
van Westerhoven AC, Dijkstra J, Aznar Palop JL, Wissink K, Bell J, Kema GHJ, Seidl MF. Frequent genetic exchanges revealed by a pan-mitogenome graph of a fungal plant pathogen. mBio 2024:e0275824. [PMID: 39535230 DOI: 10.1128/mbio.02758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondria are present in almost all eukaryotic lineages. The mitochondrial genomes (mitogenomes) evolve separately from nuclear genomes, and they can therefore provide relevant insights into the evolution of their host species. Fusarium oxysporum is a major fungal plant pathogen that is assumed to reproduce clonally. However, horizontal chromosome transfer between strains can occur through heterokaryon formation, and recently, signs of sexual recombination have been observed. Similarly, signs of recombination in F. oxysporum mitogenomes challenged the prevailing assumption of clonal reproduction in this species. Here, we construct, to our knowledge, the first fungal pan-mitogenome graph of nearly 500 F. oxysporum mitogenome assemblies to uncover the variation and evolution. In general, the gene order of fungal mitogenomes is not well conserved, yet the mitogenome of F. oxysporum and related species are highly colinear. We observed two strikingly contrasting regions in the F. oxysporum pan-mitogenome, comprising a highly conserved core mitogenome and a long variable region (6-16 kb in size), of which we identified three distinct types. The pan-mitogenome graph reveals that only five intron insertions occurred in the core mitogenome and that the long variable regions drive the difference between mitogenomes. Moreover, we observed that their evolution is neither concurrent with the core mitogenome nor with the nuclear genome. Our large-scale analysis of long variable regions uncovers frequent recombination between mitogenomes, even between strains that belong to different taxonomic clades. This challenges the common assumption of incompatibility between genetically diverse F. oxysporum strains and provides new insights into the evolution of this fungal species.IMPORTANCEInsights into plant pathogen evolution is essential for the understanding and management of disease. Fusarium oxysporum is a major fungal pathogen that can infect many economically important crops. Pathogenicity can be transferred between strains by the horizontal transfer of pathogenicity chromosomes. The fungus has been thought to evolve clonally, yet recent evidence suggests active sexual recombination between related isolates, which could at least partially explain the horizontal transfer of pathogenicity chromosomes. By constructing a pan-genome graph of nearly 500 mitochondrial genomes, we describe the genetic variation of mitochondria in unprecedented detail and demonstrate frequent mitochondrial recombination. Importantly, recombination can occur between genetically diverse isolates from distinct taxonomic clades and thus can shed light on genetic exchange between fungal strains.
Collapse
Affiliation(s)
- Anouk C van Westerhoven
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, Netherlands
| | - Jelmer Dijkstra
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, Netherlands
| | - Jose L Aznar Palop
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Kyran Wissink
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jasper Bell
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, Netherlands
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
3
|
Patro TSSK, Palanna KB, Jeevan B, Tatineni P, Poonacha TT, Khan F, Ramesh GV, Nayak AM, Praveen B, Divya M, Anuradha N, Rani YS, Nagaraja TE, Madhusudhana R, Satyavathi CT, Prasanna SK. Virulence perspective genomic research unlocks the secrets of Rhizoctonia solani associated with banded sheath blight in Barnyard Millet ( Echinochloa frumentacea). FRONTIERS IN PLANT SCIENCE 2024; 15:1457912. [PMID: 39529934 PMCID: PMC11551851 DOI: 10.3389/fpls.2024.1457912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Introduction Banded sheath blight (Bsb) disease, caused by Rhizoctonia solani, is an emerging problem in barnyard millet cultivation. One of the significant goals of pathogenomic research is to identify genes responsible for pathogenicity in the fungus. Methods A virulence profiling-based approach was employed and six R. solani isolates were collected from various ecological zones of India. The morphological parameters and virulence of all of the six R. solani isolates were investigated. The most virulent strain was designated as RAP2 and its genome has been sequenced, assembled, and annotated. Results The RAP2 genome is 43.63 megabases in size and comprises 10.95% repetitive DNA, within which 46% are retroelements, 8% are DNA transposons, and 46% are unidentified DNA. The Gene Ontology (GO) annotation of RAP2 proteins revealed that "phosphorylation", "membrane", and "ATP binding" have the highest gene enrichment in the "biological process", "cellular component" and "molecular function" domains, respectively. The genome comprises a majority of secretory proteins in the pectin lyase fold/virulence factor superfamily, which break down plant cell wall polymers to extract saccharides. The RAP2 genome is comparable to R. solani, which infects maize and rice, but it diverges further from soybean in terms of nucleotide-level genetic similarity. Orthologous clustering of RAP2 protein sequences with R. solani infecting maize, rice, and soybean yields 5606 proteins shared across all genomes. GO analysis of 25 proteins specific to the RAP2 genome found enrichment in the ethylene response, which can cause spore germination and infection in host plants. Discussion Interestingly, a 28-bp deletion in the RAP2 strain's cutinase domain was discovered in the cutinase protein, which might be important in the infection process, perhaps rendering the enzyme inactive or allowing the pathogen to infect barnyard millet while avoiding host defense. This study sheds light on the genetic makeup of R. solani, allowing researchers to discover critical genes related with pathogenicity as well as potential targets for fungicide development.
Collapse
Affiliation(s)
- T. S. S. K. Patro
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - K. B. Palanna
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, Project Coordinating (PC) Unit, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - B. Jeevan
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Pallavi Tatineni
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - T. Tharana Poonacha
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Farooq Khan
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - G. V. Ramesh
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anusha M. Nayak
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Boda Praveen
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - M. Divya
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - N. Anuradha
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - Y. Sandhya Rani
- Agricultural Research Station, Acharya N. G. Ranga (ANGR) Agricultural University, Vizianagaram, Andhra Pradesh, India
| | - T. E. Nagaraja
- ICAR-All India Coordinated Research Project (ICAR-AICRP) on Small Millets, Project Coordinating (PC) Unit, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - R. Madhusudhana
- ICAR- Indian Institute of Millets Research, Hyderabad, Telangana, India
| | | | - S. Koti Prasanna
- Department of Plant Biotechnology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Prati S, Rückert S, Grabner DS, Sures B, Bojko J. Metacollinia emscheri n. sp., a novel sanguicolous apostome ciliate of freshwater amphipods (Gammarus spp.). J Invertebr Pathol 2024; 207:108224. [PMID: 39455052 DOI: 10.1016/j.jip.2024.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
We describe a novel sanguicolous parasitic ciliate, Metacollinia emscheri n. sp., found in the freshwater amphipods Gammarus pulex and G. fossarum. This ciliate infected 8.05 % of the amphipods collected in a German stream catchment, the Boye, a tributary of the river Emscher. The ciliate showed morphological characteristics fitting the genus Metacollinia. Different life stages of variable size occurred simultaneously in the hemocoel throughout the hosts' body. The tomont had 40-47 slightly spiraled kineties, a non-ciliated cortical band, a large macronucleus, and contractile vacuoles arranged in rows or scattered throughout the cytoplasm. The protomites/tomites with nine somatic kineties presented evidence of the buccal kineties x, y, and z reminiscent of those of the order Foettingeriida. Phylogenetic analyses of the 18S rRNA and COI regions confirm the ciliate placement in the Collinidae and a close relatedness to the type species of the genus Metacollinia, Metacollinia luciensis. We formally describe this new parasite as Metacollinia emscheri n. sp. using pathological, morphological, and nuclear/mitochondrial genetic data. The systemic infections observed in histological preparations and the pathogenicity of Metacollinia emscheri n. sp. suggest that this parasite might influence host population dynamics. Given the ecological importance of amphipods as keystone species in freshwater ecosystems, an outbreak of this parasite might indirectly impact ecosystem functioning.
Collapse
Affiliation(s)
- Sebastian Prati
- Aquatic Ecology, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany.
| | - Sonja Rückert
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany; Eukaryotic Microbiology, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany; Center for Conservation and Restoration Science, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh EH11 4BN, United Kingdom
| | - Daniel S Grabner
- Aquatic Ecology, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Bernd Sures
- Aquatic Ecology, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Jamie Bojko
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| |
Collapse
|
5
|
Barcytė D, Jaške K, Pánek T, Yurchenko T, Ševčíková T, Eliášová A, Eliáš M. A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology. Open Biol 2024; 14:240022. [PMID: 39474867 PMCID: PMC11528492 DOI: 10.1098/rsob.240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024] Open
Abstract
Complete plastid loss seems to be very rare among secondarily non-photosynthetic eukaryotes. Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic algal class Synchromophyceae (Ochrophyta), is a candidate for such a case based on a previous investigation by transmission electron microscopy. Here, we characterize this organism in further detail and describe it as Leucomyxa plasmidifera gen. et sp. nov., additionally demonstrating it is the first known representative of a broader clade of non-photosynthetic ochrophytes. We recovered its complete plastid genome, exhibiting a reduced gene set similar to plastomes of other non-photosynthetic ochrophytes, yet being even more extreme in sequence divergence. Identification of components of the plastid protein import machinery in the L. plasmidifera transcriptome assembly corroborated that the organism possesses a cryptic plastid organelle. According to our bioinformatic reconstruction, the plastid contains a unique combination of biosynthetic pathways producing haem, a folate precursor and tocotrienols. As another twist to its organellar biology, L. plasmidifera turned out to contain an unusual long insertion in its mitogenome related to a newly discovered mitochondrial plasmid exhibiting unprecedented features in terms of its size and coding capacity. Combined, our work uncovered further striking outcomes of the evolutionary course of semiautonomous organelles in protists.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2,128 43, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Anežka Eliášová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| |
Collapse
|
6
|
Mukhopadhyay J, Hausner G. Interconnected roles of fungal nuclear- and intron-encoded maturases: at the crossroads of mitochondrial intron splicing. Biochem Cell Biol 2024; 102:351-372. [PMID: 38833723 DOI: 10.1139/bcb-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Group I and II introns are large catalytic RNAs (ribozymes) that are frequently encountered in fungal mitochondrial genomes. The discovery of respiratory mutants linked to intron splicing defects demonstrated that for the efficient removal of organellar introns there appears to be a requirement of protein splicing factors. These splicing factors can be intron-encoded proteins with maturase activities that usually promote the splicing of the introns that encode them (cis-acting) and/or nuclear-encoded factors that can promote the splicing of a range of different introns (trans-acting). Compared to plants organellar introns, fungal mitochondrial intron splicing is still poorly explored, especially in terms of the synergy of nuclear factors with intron-encoded maturases that has direct impact on splicing through their association with intron RNA. In addition, nuclear-encoded accessory factors might drive the splicing impetus through translational activation, mitoribosome assembly, and phosphorylation-mediated RNA turnover. This review explores protein-assisted splicing of introns by nuclear and mitochondrial-encoded maturases as a means of mitonuclear interplay that could respond to environmental and developmental factors promoting phenotypic adaptation and potentially speciation. It also highlights key evolutionary events that have led to changes in structure and ATP-dependence to accommodate the dual functionality of nuclear and organellar splicing factors.
Collapse
Affiliation(s)
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
van der Nest MA, Steenkamp ET, De Vos L, Wienk R, Swart V, van den Berg N. Complete mitochondrial genome sequence of the white root rot pathogen Dematophora necatrix (Xylariaceae: Xylariales). Mitochondrial DNA B Resour 2024; 9:1207-1212. [PMID: 39286473 PMCID: PMC11404375 DOI: 10.1080/23802359.2024.2403411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
The mitochondrial genome of Dematophora necatrix is 121,350 base pairs in length with a G + C content of 30.19%. Phylogenetic analysis showed that D. necatrix grouped with other members of the Xylariaceae, with which its mitogenome also shares a broadly similar architecture and gene content. The D. necatrix mitogenome contains 14 protein-coding and 26 tRNA-encoding genes, as well as one copy each of the rnl, rns, rps3 and nat1 genes. However, as much as 80% of this genome is intronic or non-coding. This is likely due to expansions and rearrangements caused by the large number of group I introns and the homing endonucleases and reverse-transcriptases they encode. Our study thus provides a valuable foundation from which to explore the mitochondrion's role in the biology of D. necatrix, and also serves as a resource for investigating the pathogen's population biology and general ecology.
Collapse
Affiliation(s)
- Magriet A van der Nest
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Raven Wienk
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Syazwan SA, Mohd-Farid A, Yih Lee S, Mohamed R. Comparative analysis of mitochondrial genomes in Ceratocystis fimbriata complex across diverse hosts. Gene 2024; 921:148539. [PMID: 38710292 DOI: 10.1016/j.gene.2024.148539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The decline ofAcacia mangiumWilld. in Malaysia, especially in Sabah since 2010, is primarily due to Ceratocystiswilt and canker disease (CWCD) caused by theCeratocystis fimbriataEllis & Halst. complex. This study was aimed to investigate the mitochondrial genome architecture of two differentC. fimbriatacomplex isolates from Malaysia: one fromA. mangiumin Pahang (FRIM1162) and another fromEucalyptus pellitain Sarawak (FRIM1441). This research employed Next-Generation Sequencing (NGS) to contrast genomes from diverse hosts with nine additional mitochondrial sequences, identifying significant genetic diversity and mutational hotspots in the mitochondrial genome alignment. The mitochondrial genome-based phylogenetic analysis revealed a significant genetic relationship between the studied isolates and theC. fimbriatacomplex in the South American Subclade, indicating that theC. fimbriatacomplex discovered in Malaysia isC. manginecans. The comparative mitochondrial genome demonstrates the adaptability of the complex due to mobile genetic components and genomic rearrangements in the studiedfungal isolates. This research enhances our knowledge of the genetic diversity and evolutionary patterns within theC. fimbriatacomplex, aiding in a deeper understanding of fungal disease development and host adaption processes. The acquired insights are crucial for creating specific management strategies for CWCD, improving the overall understanding of fungal disease evolution and control.
Collapse
Affiliation(s)
- Samsuddin Ahmad Syazwan
- Mycology and Pathology Branch, Forest Health and Conservation Programme, Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia; Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, 43400 Serdang, Selangor, Malaysia.
| | - Ahmad Mohd-Farid
- Mycology and Pathology Branch, Forest Health and Conservation Programme, Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia.
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Rozi Mohamed
- Department of Forest Science and Biodiversity, Faculty of Forestry and Environment, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Moreira D, Blaz J, Kim E, Eme L. A gene-rich mitochondrion with a unique ancestral protein transport system. Curr Biol 2024; 34:3812-3819.e3. [PMID: 39084221 DOI: 10.1016/j.cub.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Mitochondria originated from an ancient endosymbiosis involving an alphaproteobacterium.1,2,3 Over time, these organelles reduced their gene content massively, with most genes being transferred to the host nucleus before the last eukaryotic common ancestor (LECA).4 This process has yielded varying gene compositions in modern mitogenomes, including the complete loss of this organellar genome in some extreme cases.5,6,7,8,9,10,11,12,13,14 At the other end of the spectrum, jakobids harbor the most gene-rich mitogenomes, encoding 60-66 proteins.8 Here, we introduce the mitogenome of Mantamonas sphyraenae, a protist from the deep-branching CRuMs supergroup.15,16 Remarkably, it boasts the most gene-rich mitogenome outside of jakobids, by housing 91 genes, including 62 protein-coding ones. These include rare homologs of the four subunits of the bacterial-type cytochrome c maturation system I (CcmA, CcmB, CcmC, and CcmF) alongside a unique ribosomal protein S6. During the early evolution of mitochondria, gene transfer from the proto-mitochondrial endosymbiont to the nucleus became possible thanks to systems facilitating the transport of proteins synthesized in the host cytoplasm back to the mitochondrion. In addition to the universally found eukaryotic protein import systems, jakobid mitogenomes were reported to uniquely encode the SecY transmembrane protein of the Sec general secretory pathway, whose evolutionary origin was however unclear. The Mantamonas mitogenome not only encodes SecY but also SecA, SecE, and SecG, making it the sole eukaryote known to house a complete mitochondrial Sec translocation system. Furthermore, our phylogenetic and comparative genomic analyses provide compelling evidence for the alphaproteobacterial origin of this system, establishing its presence in LECA.
Collapse
Affiliation(s)
- David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France.
| | - Jazmin Blaz
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France
| | - Eunsoo Kim
- Division of EcoScience, Ewha Womans University, Seoul, South Korea; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Laura Eme
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Feng XL, Xie TC, Wang ZX, Lin C, Li ZC, Huo J, Li Y, Liu C, Gao JM, Qi J. Distinguishing Sanghuangporus from sanghuang-related fungi: a comparative and phylogenetic analysis based on mitogenomes. Appl Microbiol Biotechnol 2024; 108:423. [PMID: 39037499 PMCID: PMC11263249 DOI: 10.1007/s00253-024-13207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/24/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.
Collapse
Affiliation(s)
- Xi-Long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Tian-Chen Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhen-Xin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhao-Chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jinxi Huo
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| |
Collapse
|
11
|
Chavarro-Mesa E, Almeida JVDA, Silva SR, Lopes SS, Barbosa JBF, Oliveira D, Corrêa MA, Moraes AP, Miranda VFO, Prosdocimi F, Varani AM. The mitogenomic landscape of Banisteriopsis caapi (Malpighiaceae), the sacred liana used for ayahuasca preparation. Genet Mol Biol 2024; 47:e20230301. [PMID: 38985012 PMCID: PMC11234496 DOI: 10.1590/1678-4685-gmb-2023-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/03/2024] [Indexed: 07/11/2024] Open
Abstract
The sacred ayahuasca brew, utilized by indigenous communities in the Amazon and syncretic religious groups in Brazil, primarily consists of a decoction of two plants: (i) the Amazonian liana known as Mariri or Jagube (Banisteriopsis caapi), and (ii) the shrub referred as Chacrona or Rainha (Psychotria viridis). While Chacrona leaves are rich in N,N-Dimethyltryptamine (DMT), a potent psychedelic, the macerated vine of Mariri provides beta-carboline alkaloids acting as monoamine oxidase inhibitors, preventing DMT's degradation. This study sequenced, assembled, and analyzed the complete genome of B. caapi's mitochondrion, yielding a circular structure spanning 503,502 bp. Although the mtDNA encompasses most plant mitochondrial genes, it lacks some ribosomal genes, presents some atypical genes, and contains plastid pseudogenes, suggesting gene transfer between organelles. The presence of a 7-Kb repetitive segment containing copies of the rrnL and trnfM genes suggests mitogenome isomerization, supporting the hypothesis of dynamic mitogenome maintenance in plants. Phylogenetics and phylogenomics across 24 Malpighiales confirms the sample's placement in the "Tucunacá" ethnovariety, aligning with morphological identification. This study spearheads efforts to decode the genome of this esteemed Malpighiaceae.
Collapse
Affiliation(s)
- Edisson Chavarro-Mesa
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biotecnologia Agropecuária e Ambiental, Jaboticabal, SP, Brazil
| | - João Victor Dos Anjos Almeida
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biotecnologia Agropecuária e Ambiental, Jaboticabal, SP, Brazil
| | - Saura R Silva
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biologia, Jaboticabal, SP, Brazil
| | - Simone Santos Lopes
- Universidade Estadual da Paraíba (UEPB), Laboratório de Genética e Biologia Molecular, Campina Grande, PB, Brazil
| | | | - Danilo Oliveira
- Universidade Federal do Rio de Janeiro (UFRJ), Faculdade de Farmácia, Laboratório de Etnofarmacologia e Bioprospecção Aplicada, Rio de Janeiro, RJ, Brazil
| | - Maria Alice Corrêa
- Universidade Federal do Rio de Janeiro (UFRJ), Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Moraes
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, São Bernardo do Campo, SP, Brazil
| | - Vitor F O Miranda
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biologia, Jaboticabal, SP, Brazil
| | - Francisco Prosdocimi
- Universidade Federal do Rio de Janeiro (UFRJ), Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
| | - Alessandro M Varani
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biotecnologia Agropecuária e Ambiental, Jaboticabal, SP, Brazil
| |
Collapse
|
12
|
Bonacolta AM, Krause-Massaguer J, Smit NJ, Sikkel PC, Del Campo J. A new and widespread group of fish apicomplexan parasites. Curr Biol 2024; 34:2748-2755.e3. [PMID: 38821048 DOI: 10.1016/j.cub.2024.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexans are obligate intracellular parasites that have evolved from a free-living, phototrophic ancestor. They have been reported from marine environmental samples in high numbers,1 with several clades of apicomplexan-related lineages (ARLs) having been described from environmental sequencing data (16S rRNA gene metabarcoding).2 The most notable of these are the corallicolids (previously ARL-V), which possess chlorophyll-biosynthesis genes in their relic chloroplast (apicoplast) and are geographically widespread and abundant symbionts of anthozoans.3 Corallicolids are related to the Eimeriorina, a suborder of apicomplexan coccidians that include other notable members such as Toxoplasma gondii.4Ophioblennius macclurei, the redlip blenny, along with other tropical reef fishes, is known to be infected by Haemogregarina-like and Haemohormidium-like parasites5 supposedly belonging to the Adeleorina; however, phylogenetics shows that these parasites are instead related to the Eimeriorina.6,7 Hybrid genomic sequencing of apicomplexan-infected O. macclurei blood recovered the entire rRNA operon of this apicomplexan parasite along with the complete mitochondrion and apicoplast genomes. Phylogenetic analyses using this new genomic information consistently place these fish-infecting apicomplexans, hereby informally named ichthyocolids, sister to the corallicolids within Coccidia. The apicoplast genome did not contain chlorophyll biosynthesis genes, providing evidence for another independent loss of this pathway within Apicomplexa. Based on the 16S rRNA gene found in the apicoplast, this group corresponds to the previously described ARL-VI. Screening of fish microbiome studies using the plastid 16S rRNA gene shows these parasites to be geographically and taxonomically widespread in fish species across the globe with implications for commercial fisheries and oceanic food webs.
Collapse
Affiliation(s)
- Anthony M Bonacolta
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL 33149, USA; Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Joana Krause-Massaguer
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Nico J Smit
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL 33149, USA; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Paul C Sikkel
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL 33149, USA; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Javier Del Campo
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL 33149, USA; Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Pg. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain.
| |
Collapse
|
13
|
Deng Y, Chen G, Bao X, He J. Characterization and phylogenetic analysis of the complete mitochondrial genome of Saccharomycopsis fibuligera (lindner) Klocker 1907 (saccharomycetales: saccharomycopsidaceae). Mitochondrial DNA B Resour 2024; 9:743-747. [PMID: 38887218 PMCID: PMC11182061 DOI: 10.1080/23802359.2024.2364756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Saccharomycopsis fibuligera (Lindner) Klocker 1907 is frequently employed in the fermentation of metabolites such as citric acid, ethanol, mannitol, and pyruvate. Its heat tolerance and alcohol-producing capabilities during fermentation make it a desirable option for bread and wine production. To date, the mitochondrial genome of S. fibuligera has not been sequenced. In the present study, we obtained the full mitochondrial genome of S. fibuligera, which is 57,302 bp long and has a GC content of 24.40%. This genome contained 14 core protein-coding genes, 3 independent ORFs, 21 intronic ORFs, 25 tRNAs, and 2 rRNA genes. By utilizing the Bayesian inference phylogenetic method, we constructed phylogenetic trees for 24 Saccharomycotina fungi, which indicated that S. fibuligera is closely related to S. capsularis.
Collapse
Affiliation(s)
- Yue Deng
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| | - Xuedong Bao
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| | - Jie He
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Cheng A, Sadali NM, Rejab NA, Uludag A. Piece and parcel of gymnosperm organellar genomes. PLANTA 2024; 260:14. [PMID: 38829418 DOI: 10.1007/s00425-024-04449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
MAIN CONCLUSION Significant past, present, and potential future research into the organellar (plastid and mitochondrial) genomes of gymnosperms that can provide insight into the unknown origin and evolution of plants is highlighted. Gymnosperms are vascular seed plants that predominated the ancient world before their sister clade, angiosperms, took over during the Late Cretaceous. The divergence of gymnosperms and angiosperms took place around 300 Mya, with the latter evolving into the diverse group of flowering plants that dominate the plant kingdom today. Although gymnosperms have reportedly made some evolutionary innovations, the literature on their genome advances, particularly their organellar (plastid and mitochondrial) genomes, is relatively scattered and fragmented. While organellar genomes can shed light on plant origin and evolution, they are frequently overlooked, due in part to their limited contribution to gene expression and lack of evolutionary dynamics when compared to nuclear genomes. A better understanding of gymnosperm organellar genomes is critical because they reveal genetic changes that have contributed to their unique adaptations and ecological success, potentially aiding in plant survival, enhancement, and biodiversity conservation in the face of climate change. This review reveals significant information and gaps in the existing knowledge base of organellar genomes in gymnosperms, as well as the challenges and research needed to unravel their complexity.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Najiah Mohd Sadali
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Ardiyana Rejab
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmet Uludag
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Agriculture, Canakkale Onsekiz Mart University, 17100, Canakkale, Türkiye
| |
Collapse
|
15
|
Brejová B, Hodorová V, Mutalová S, Cillingová A, Tomáška Ľ, Vinař T, Nosek J. Chromosome-level genome assembly of the yeast Lodderomyces beijingensis reveals the genetic nature of metabolic adaptations and identifies subtelomeres as hotspots for amplification of mating type loci. DNA Res 2024; 31:dsae014. [PMID: 38686638 PMCID: PMC11100356 DOI: 10.1093/dnares/dsae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Lodderomyces beijingensis is an ascosporic ascomycetous yeast. In contrast to related species Lodderomyces elongisporus, which is a recently emerging human pathogen, L. beijingensis is associated with insects. To provide an insight into its genetic makeup, we investigated the genome of its type strain, CBS 14171. We demonstrate that this yeast is diploid and describe the high contiguity nuclear genome assembly consisting of eight chromosome-sized contigs with a total size of about 15.1 Mbp. We find that the genome sequence contains multiple copies of the mating type loci and codes for essential components of the mating pheromone response pathway, however, the missing orthologs of several genes involved in the meiotic program raise questions about the mode of sexual reproduction. We also show that L. beijingensis genome codes for the 3-oxoadipate pathway enzymes, which allow the assimilation of protocatechuate. In contrast, the GAL gene cluster underwent a decay resulting in an inability of L. beijingensis to utilize galactose. Moreover, we find that the 56.5 kbp long mitochondrial DNA is structurally similar to known linear mitochondrial genomes terminating on both sides with covalently closed single-stranded hairpins. Finally, we discovered a new double-stranded RNA mycovirus from the Totiviridae family and characterized its genome sequence.
Collapse
Affiliation(s)
- Broňa Brejová
- Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, 842 48 Bratislava, Slovak Republic
| | - Viktória Hodorová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Sofia Mutalová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Andrea Cillingová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| | - Tomáš Vinař
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava, 842 48 Bratislava, Slovak Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
16
|
Patil MP, Oktavitri NI, Kim YR, Yoon S, Lee IC, Kim JO, Kim K. Complete Mitochondrial Genome and Its Phylogenetic Position in Red Algae Fushitsunagia catenata from South Korea. Life (Basel) 2024; 14:534. [PMID: 38672804 PMCID: PMC11050817 DOI: 10.3390/life14040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The mitogenome is an important tool in taxonomic and evolutionary studies. Only a few complete mitogenomes have been reported for red algae. Herein, we reported the complete mitochondrial genome sequence of Fushitsunagia catenata (Harvey) Filloramo, G.V. and Saunders, G.W. 2016, a monospecific genus. The genome was 25,889 bp in circumference and had a strongly biased AT of 70.4%. It consisted of 2 rRNAs, 23 tRNAs, and 24 protein-coding genes (PCGs). nad5 (1986 bp) was the largest and atp9 (231 bp) was the smallest PCG. All PCGs used ATG as an initiation codon and TAA as a termination codon, except TAG, which was the termination codon used in the sdh3, rps3, and rps11 genes. The general structure and gene content of the present findings were almost identical to those of other red algae genomes, particularly those of the Rhodymeniales order. The maximum likelihood analysis showed that F. catenata was closely related to Rhodymenia pseudopalmata. The mitochondrial genome data presented in this study will enhance our understanding of evolution in Rhodophyta species.
Collapse
Affiliation(s)
- Maheshkumar Prakash Patil
- Industry-University Cooperation Foundation, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Nur Indradewi Oktavitri
- Study Program of Environmental Engineering, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Young-Ryun Kim
- Marine Eco-Technology Institute, Busan 48520, Republic of Korea
| | - Seokjin Yoon
- Dokdo Fisheries Research Center, National Institute of Fisheries Science, Pohang 37709, Republic of Korea
| | - In-Cheol Lee
- Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Jong-Oh Kim
- Department of Microbiology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
- School of Marine and Fisheries Life Science, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Kyunghoi Kim
- Study Program of Environmental Engineering, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia;
- Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
17
|
Liu T, Pyle AM. Highly Reactive Group I Introns Ubiquitous in Pathogenic Fungi. J Mol Biol 2024; 436:168513. [PMID: 38447889 DOI: 10.1016/j.jmb.2024.168513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Systemic fungal infections are a growing public health threat, and yet viable antifungal drug targets are limited as fungi share a similar proteome with humans. However, features of RNA metabolism and the noncoding transcriptomes in fungi are distinctive. For example, fungi harbor highly structured RNA elements that humans lack, such as self-splicing introns within key housekeeping genes in the mitochondria. However, the location and function of these mitochondrial riboregulatory elements has largely eluded characterization. Here we used an RNA-structure-based bioinformatics pipeline to identify the group I introns interrupting key mitochondrial genes in medically relevant fungi, revealing their fixation within a handful of genetic hotspots and their ubiquitous presence across divergent phylogenies of fungi, including all highest priority pathogens such as Candida albicans, Candida auris, Aspergillus fumigatus and Cryptococcus neoformans. We then biochemically characterized two representative introns from C. albicans and C. auris, demonstrating their exceptionally efficient splicing catalysis relative to previously-characterized group I introns. Indeed, the C. albicans mitochondrial intron displays extremely rapid catalytic turnover, even at ambient temperatures and physiological magnesium ion concentrations. Our results unmask a significant new set of players in the RNA metabolism of pathogenic fungi, suggesting a promising new type of antifungal drug target.
Collapse
Affiliation(s)
- Tianshuo Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Zhiyuan H, Lin C, Yihan W, Meng D, Yanzi L, Zhenggang X. Reexamination of Aspergillus cristatus phylogeny in dark tea: Characteristics of the mitochondrial genome. Open Life Sci 2024; 19:20220838. [PMID: 38585639 PMCID: PMC10997147 DOI: 10.1515/biol-2022-0838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
To enhance our understanding of Aspergillus cristatus, an important functional microorganism, the characteristics of its mitochondrial genome were analyzed and compared with related species. The mitochondrial genome of A. cristatus was determined to be 77,649 bp in length, with 15 protein-coding regions. Notably, its length surpassed that of the other species, primarily attributable to the intron length. Gene order exhibited significant variations, with greater conservation observed in the genus Penicillium compared to Aspergillus. Phylogenetic tree analyses indicated that the genera Aspergillus and Penicillium are closely related but monophyletic. Furthermore, the phylogenetic tree constructed based on protein-coding genes effectively distinguished all strains with high branching confidence. This approach provides a robust reflection of the evolutionary relationship between A. cristatus and its related species, offering potential for the development of molecular markers suitable for Aspergillus and Penicillium.
Collapse
Affiliation(s)
- Hu Zhiyuan
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Chen Lin
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Wang Yihan
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Dong Meng
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Li Yanzi
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Xu Zhenggang
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
- College of Forestry, Northwest A & F University, Yangling712100, Shaanxi, China
| |
Collapse
|
19
|
Huang Y, Wang H, Huo S, Lu J, Norvienyeku J, Miao W, Qin C, Liu W. Comparative Mitogenomics Analysis Revealed Evolutionary Divergence among Neopestalotiopsis Species Complex (Fungi: Xylariales). Int J Mol Sci 2024; 25:3093. [PMID: 38542068 PMCID: PMC10970013 DOI: 10.3390/ijms25063093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 11/11/2024] Open
Abstract
The genus Neopestalotiopsis consists of obligate parasites that cause ring spot, scab, and leaf blight diseases in higher plant species. We assembled the three complete mitogenomes for the guava fruit ring spot pathogen, Neopestalotiopsis cubana. The mitogenomes are circular, with sizes of 38,666 bp, 33,846 bp, and 32,593 bp. The comparative analyses with Pestalotiopsis fici showed that N. cubana differs greatly from it in the length of the mitogenomes and the number of introns. Moreover, they showed significant differences in the gene content and tRNAs. The two genera showed little difference in gene skewness and codon preference for core protein-coding genes (PCGs). We compared gene sequencing in the mitogenomes of the order Xylariales and found large-scale gene rearrangement events, such as gene translocations and the duplication of tRNAs. N. cubana shows a unique evolutionary position in the phylum Ascomycota constructed in phylogenetic analyses. We also found a more concentrated distribution of evolutionary pressures on the PCGs of Neopestalotiopsis in the phylum Ascomycota and that they are under little selective pressure compared to other species and are subjected to purifying selection. This study explores the evolutionary dynamics of the mitogenomes of Neopestalotiopsis and provides important support for genetic and taxonomic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunxiu Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.H.); (H.W.); (S.H.); (J.L.); (J.N.); (W.M.)
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.H.); (H.W.); (S.H.); (J.L.); (J.N.); (W.M.)
| |
Collapse
|
20
|
Ament-Velásquez SL, Vogan AA, Wallerman O, Hartmann FE, Gautier V, Silar P, Giraud T, Johannesson H. High-Quality Genome Assemblies of 4 Members of the Podospora anserina Species Complex. Genome Biol Evol 2024; 16:evae034. [PMID: 38386982 PMCID: PMC10936905 DOI: 10.1093/gbe/evae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.
Collapse
Affiliation(s)
- S Lorena Ament-Velásquez
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Comparative Genetics and Functional Genomics, Uppsala University, 752 37 Uppsala, Sweden
| | - Fanny E Hartmann
- Ecologie Systematique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198 Gif-sur-Yvette, France
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris Cité, F-75013 Paris, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris Cité, F-75013 Paris, France
| | - Tatiana Giraud
- Ecologie Systematique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198 Gif-sur-Yvette, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
- The Royal Swedish Academy of Sciences, 114 18 Stockholm, Sweden
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Cabrera FP, Paiano MO, Fumo JT, Allsopp KR, Smith CM, Spalding HL, Kosaki RK, Sherwood AR. Organellar genomic characterization of Anunuuluaehu liula representing a new genus and species of Phyllophoraceae (Gigartinales, Rhodophyta) from the mesophotic zone of Hawai'i. JOURNAL OF PHYCOLOGY 2024; 60:116-132. [PMID: 38289653 DOI: 10.1111/jpy.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Over the last 2 decades, routine collections in the Hawaiian Archipelago have expanded to mesophotic reefs, leading to the discovery of a new red algal genus and species, here described as Anunuuluaehu liula gen. et sp. nov. This study provides a detailed genus and species description and characterizes chloroplast and mitochondrial organellar genomes. The new genus, Anunuuluaehu, shares many characteristics with the family Phyllophoraceae and shows close similarities to Archestennogramma and Stenogramma, including habit morphology, nemathecia forming proliferations at the outer cortex with terminal chains of tetrasporangia, and carposporophytes with multi-layered pericarps. The single species in this genus exhibits distinctive features within the Phyllophoraceae: the presence of single-layer construction of large medullary cells and the development of long, tubular gonimoblastic filaments. Multi-gene phylogenetic analyses confirmed it as a unique, monophyletic lineage within the family. Cis-splicing genes, interrupted by intron-encoded proteins within group II introns, are present in both the chloroplast and mitochondrial genomes of A. liula. Notably, a specific region of the coxI group II intron exhibits similarity to fungal introns. Anunuuluaehu liula is presumed to be endemic to the Hawaiian Archipelago and thus far is known to live solely at mesophotic depths from Hōlanikū to Kaho'olawe ranging from 54 to 201 m, which is the deepest collection record of any representative in the family. Overall, this study enhances our understanding of the genomic and taxonomic complexities of red algae in mesophotic habitats, emphasizing the significance of continued research in this area to uncover further insights into evolutionary processes and biogeographic patterns.
Collapse
Affiliation(s)
- Feresa P Cabrera
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Monica O Paiano
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - James T Fumo
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Kazumi R Allsopp
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Celia M Smith
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Heather L Spalding
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | - Randall K Kosaki
- Papahānaumokuākea Marine National Monument, NOAA, Honolulu, Hawai'i, USA
| | - Alison R Sherwood
- School of Life Sciences, University of Hawai'i, Honolulu, Hawai'i, USA
| |
Collapse
|
22
|
Huamán-Pilco AF, Ramos-Carrasco TA, Franco MEE, Tineo-Flores D, Estrada-Cañari R, Romero PE, Aguilar-Rafael V, Ramírez-Orrego LA, Tincopa-Marca R, Márquez FR, Oliva-Cruz M, Díaz-Valderrama JR. Morphological, phylogenetic, and genomic evidence reveals the causal agent of thread blight disease of cacao in Peru is a new species of Marasmius in the section Neosessiles, Marasmius infestans sp. nov. F1000Res 2024; 12:1327. [PMID: 38680601 PMCID: PMC11053350 DOI: 10.12688/f1000research.140405.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 05/01/2024] Open
Abstract
The thread blight disease (TBD) of cacao ( Theobroma cacao) in the department of Amazonas, Peru was recently reported to be caused by Marasmius tenuissimus (sect. Neosessiles). This same species is known to be the main causal agent of TBD in West Africa. However, some morphological characteristics, such as the presence of rhizomorphs, the almost exclusively white color, and pileus sizes less than 5 mm, among others, differ to the description of M. tenuissimus. Therefore, we aimed to conduct a taxonomic revision of the cacao-TBD causal agent in Peru, by using thorough micro and macro morphological, phylogenetic, and nuclear and mitochondrial genomic approaches. We showed that the causal agent of TBD of cacao in Amazonas, Peru, belongs to a new species, Marasmius infestans sp. nov. This study enriches our knowledge of species in the sect. Neosessiles, and strongly suggests that the M. tenuissimus species complex is highly diverse.
Collapse
Affiliation(s)
- Angel Fernando Huamán-Pilco
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Tito Ademir Ramos-Carrasco
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Mario Emilio Ernesto Franco
- Sustainable Plant Protection Programme, Institute of Agrifood Research and Technology (IRTA), 25198 Lieda, Spain
- Department of Soil, Plant and Food Sciences, Universita degli Studi di Bari Aldo Moro, Bari, Apulia, 70126, Italy
| | - Daniel Tineo-Flores
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
- Centro Experimental Yanayacu, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria, Jaén 06801, Calamarca, Peru
| | - Richard Estrada-Cañari
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria, Lima, Lima, Peru
| | - Pedro Eduardo Romero
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima District, Lima Region, Peru
| | - Vilma Aguilar-Rafael
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Lourdes Adriana Ramírez-Orrego
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Rosalina Tincopa-Marca
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Fanny-Rosario Márquez
- Escuela Profesional de Ingeniería Agronómica Tropical, Universidad Nacional Intercultural de Quillabamba, Quillabamba, Cusco, Peru
| | - Manuel Oliva-Cruz
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| | - Jorge Ronny Díaz-Valderrama
- Grupo de Investigación en Fitopatología y Micología, Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
- Facultad de Ingeniería y Ciencias Agrarias, National University Toribio Rodriguez de Mendoza of Amazonas, Chachapoyas, Amazonas, 01001, Peru
| |
Collapse
|
23
|
Zeng YP, Huang JY, Tu L, Zhao K. Complete mitochondrial genome sequence of Butyriboletus hainanensis (Boletales, Basidiomycota). Mitochondrial DNA B Resour 2024; 9:46-49. [PMID: 38197052 PMCID: PMC10776047 DOI: 10.1080/23802359.2023.2300473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
Butyriboletus hainanensis, a macrofungus belonging to the Boletaceae family, is named after its collection location on Hainan Island, China. However, little is known about its mitochondrial genome and its phylogenetic relationship with other boletes. In this study, we utilized next-generation sequencing technology to sequence the mitochondrial genome of Bu. hainanensis. Our findings revealed that the mitochondrial genome of this species is presumably a circular DNA molecule spanning 36,592 bp. It consists of 15 protein-coding genes, 27 transfer RNA genes, and two ribosomal RNA genes. The base composition of the mitochondrial genome is as follows: A (36.64%), C (12.22%), G (11.73%), and T (39.41%), with a GC content of 23.95%. Additionally, a phylogenetic tree was constructed based on 22 mitochondrial genomes, which provided valuable insights into the phylogenetic relationships of Bu. hainanensis with other boletes for the first time.
Collapse
Affiliation(s)
- Ya-ping Zeng
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jie-yu Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lei Tu
- Jiulingshan National Nature Reserve Administration of Jiangxi Province, Jing’an, China
| | - Kuan Zhao
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
24
|
Österman-Udd J, Lundell TK. Complete mitochondrial genome sequence of the Agaricomycetes brown rot fungus Fomitopsis pinicola isolate FBCC1181. Microbiol Resour Announc 2023; 12:e0050323. [PMID: 37909782 PMCID: PMC10720572 DOI: 10.1128/mra.00503-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
The mitochondrial genome of the brown rot fungus Fomitopsis pinicola isolate FBCC 1181 is a 66.5 kbp circular chromosome. It contains 64 predicted genes, including a set typical for Basidiomycota Agaricomycetes mitogenomes. Introns of cox and cob genes contain several homing endonucleases of both LAGLIDADG and GIY-YIG types.
Collapse
Affiliation(s)
- Janina Österman-Udd
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Taina Kristina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Tagirdzhanova G, Scharnagl K, Yan X, Talbot NJ. Genomic analysis of Coccomyxa viridis, a common low-abundance alga associated with lichen symbioses. Sci Rep 2023; 13:21285. [PMID: 38042930 PMCID: PMC10693582 DOI: 10.1038/s41598-023-48637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
Lichen symbiosis is centered around a relationship between a fungus and a photosynthetic microbe, usually a green alga. In addition to their main photosynthetic partner (the photobiont), lichen symbioses can contain additional algae present in low abundance. The biology of these algae and the way they interact with the rest of lichen symbionts remains largely unknown. Here we present the first genome sequence of a non-photobiont lichen-associated alga. Coccomyxa viridis was unexpectedly found in 12% of publicly available lichen metagenomes. With few exceptions, members of the Coccomyxa viridis clade occur in lichens as non-photobionts, potentially growing in thalli endophytically. The 45.7 Mbp genome of C. viridis was assembled into 18 near chromosome-level contigs, making it one of the most contiguous genomic assemblies for any lichen-associated algae. Comparing the C. viridis genome to its close relatives revealed the presence of traits associated with the lichen lifestyle. The genome of C. viridis provides a new resource for exploring the evolution of the lichen symbiosis, and how symbiotic lifestyles shaped evolution in green algae.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Klara Scharnagl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- University & Jepson Herbaria, University of California Berkeley, Valley Life Sciences Building, Berkeley, CA, 94720, USA
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK.
| |
Collapse
|
26
|
Thomé PC, Irisarri I, Wolinska J, Monaghan MT, Strassert JFH. Single-cell genomics reveals new rozellid lineages and supports their sister relationship to Microsporidia. Biol Lett 2023; 19:20230398. [PMID: 38087939 PMCID: PMC10716661 DOI: 10.1098/rsbl.2023.0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.
Collapse
Affiliation(s)
- Pauline C. Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, Hamburg, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Michael T. Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F. H. Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
27
|
Barcytė D, Eliáš M. Hydrocytium expands the phylogenetic, morphological, and genomic diversity of the poorly known green algal order Chaetopeltidales. AMERICAN JOURNAL OF BOTANY 2023; 110:e16238. [PMID: 37661934 DOI: 10.1002/ajb2.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
PREMISE Chaetopeltidales is a small, understudied order of the green algal class Chlorophyceae, that is slowly expanding with the occasional discoveries of novel algae. Here we demonstrate that hitherto unrecognized chaetopeltidaleans also exist among previously described but neglected and misclassified species. METHODS Strain SAG 40.91 of Characium acuminatum, shown by previous preliminary evidence to have affinities with the orders Oedogoniales, Chaetophorales, and Chaetopeltidales (together constituting the OCC clade), was investigated with light and electron microscopy to characterize its morphology and ultrastructure. Sequence assemblies of the organellar and nuclear genomes were obtained and utilized in bioinformatic and phylogenetic analyses to address the phylogenetic position of the alga and its salient genomic features. RESULTS The characterization of strain SAG 40.91 and a critical literature review led us to reinstate the forgotten genus Hydrocytium A.Braun 1855, with SAG 40.91 representing its type species, Hydrocytium acuminatum. Independent molecular markers converged on placing H. acuminatum as a deeply diverged lineage of the order Chaetopeltidales, formalized as the new family Hydrocytiaceae. Both chloroplast and mitochondrial genomes shared characteristics with other members of Chaetopeltidales and were bloated by repetitive sequences. Notably, the mitochondrial cox2a gene was transferred into the nuclear genome in the H. acuminatum lineage, independently of the same event in Volvocales. The nuclear genome data from H. acuminatum and from another chaetopeltidalean that was reported by others revealed endogenized viral sequences corresponding to novel members of the phylum Nucleocytoviricota. CONCLUSIONS The resurrected genus Hydrocytium expands the known diversity of chaetopeltidalean algae and provides the first glimpse into their virosphere.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| |
Collapse
|
28
|
Mukhopadhyay J, Wai A, Hausner G. The mitogenomes of Leptographium aureum, Leptographium sp., and Grosmannia fruticeta: expansion by introns. Front Microbiol 2023; 14:1240407. [PMID: 37637121 PMCID: PMC10448965 DOI: 10.3389/fmicb.2023.1240407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Many members of the Ophiostomatales are of economic importance as they are bark-beetle associates and causative agents for blue stain on timber and in some instances contribute towards tree mortality. The taxonomy of these fungi has been challenging due to the convergent evolution of many traits associated with insect dispersal and a limited number of morphological characters that happen to be highly pleomorphic. This study examines the mitochondrial genomes for three members of Leptographium sensu lato [Leptographium aureum (also known as Grosmannia aurea), Grosmannia fruticeta (also known as Leptographium fruticetum), and Leptographium sp. WIN(M)1376)]. Methods Illumina sequencing combined with gene and intron annotations and phylogenetic analysis were performed. Results Sequence analysis showed that gene content and gene synteny are conserved but mitochondrial genome sizes were variable: G. fruticeta at 63,821 bp, Leptographium sp. WIN(M)1376 at 81,823 bp and L. aureum at 104,547 bp. The variation in size is due to the number of introns and intron-associated open reading frames. Phylogenetic analysis of currently available mitochondrial genomes for members of the Ophiostomatales supports currently accepted generic arrangements within this order and specifically supports the separation of members with Leptographium-like conidiophores into two genera, with L. aureum grouping with Leptographium and G. fruticeta aligning with Grosmannia. Discussion Mitochondrial genomes are promising sequences for resolving evolutionary relationships within the Ophiostomatales.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|