He ZJ, Ooi TL, Su YR. Perceptual mechanisms underlying amodal surface integration of 3-D stereoscopic stimuli.
Vision Res 2018;
143:66-81. [PMID:
29248730 DOI:
10.1016/j.visres.2017.10.005]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022]
Abstract
The visual system can represent a partially occluded 3-D surface from images of separated surface segments. The underlying amodal surface integration process accomplishes this by amodally extending each surface segment behind the occluder (amodal surface extension) and integrating the extended surfaces to form a whole surface representation. We conducted five experiments to investigate how depth cues, such as binocular disparity, half-occlusion, and monocular depth cues (T-junctions and L-junctions), contribute to amodal surface extension, and how the geometrical relationship and image similarity among the surface segments affect surface integration. This was achieved by having observers adjust the stereoscopic depth and slant of a comparison stimulus to match those of the tested 3-D stimulus. We found that both binocular disparity and half-occlusion cues are used to determine border-ownership assignment of surface segments and for amodal surface extension. We also found that separated surface segments need to have the same luminance contrast-polarity for them to be integrated as a whole surface. Finally, we found that having the same motion direction, minimum misalignment between boundary contours, and proximity among separated segments facilitate their integration. Overall, our findings reveal a set of "perceptual factors" for amodal surface integration, which arguably reflects our visual system's built-in knowledge of the regularities in natural scenes.
Collapse