1
|
Neurometabolic Dysfunction in SPG11 Hereditary Spastic Paraplegia. Nutrients 2022; 14:nu14224803. [PMID: 36432490 PMCID: PMC9693816 DOI: 10.3390/nu14224803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Pathogenic variants in SPG11 cause the most common autosomal recessive complicated hereditary spastic paraplegia. Besides the prototypical combination of spastic paraplegia with a thin corpus callosum, obesity has increasingly been reported in this multisystem neurodegenerative disease. However, a detailed analysis of the metabolic state is lacking. METHODS In order to characterize metabolic alterations, a cross-sectional analysis was performed comparing SPG11 patients (n = 16) and matched healthy controls (n = 16). We quantified anthropometric parameters, body composition as determined by bioimpedance spectroscopy, and serum metabolic biomarkers, and we measured hypothalamic volume by high-field MRI. RESULTS Compared to healthy controls, SPG11 patients exhibited profound changes in body composition, characterized by increased fat tissue index, decreased lean tissue index, and decreased muscle mass. The presence of lymphedema correlated with increased extracellular fluid. The serum levels of the adipokines leptin, resistin, and progranulin were significantly altered in SPG11 while adiponectin and C1q/TNF-related protein 3 (CTRP-3) were unchanged. MRI volumetry revealed a decreased hypothalamic volume in SPG11 patients. CONCLUSIONS Body composition, adipokine levels, and hypothalamic volume are altered in SPG11. Our data indicate a link between obesity and hypothalamic neurodegeneration in SPG11 and imply that specific metabolic interventions may prevent obesity despite severely impaired mobility in SPG11.
Collapse
|
2
|
Gennemark P, Trägårdh M, Lindén D, Ploj K, Johansson A, Turnbull A, Carlsson B, Antonsson M. Translational Modeling to Guide Study Design and Dose Choice in Obesity Exemplified by AZD1979, a Melanin-concentrating Hormone Receptor 1 Antagonist. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:458-468. [PMID: 28556607 PMCID: PMC5529746 DOI: 10.1002/psp4.12199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
In this study, we present the translational modeling used in the discovery of AZD1979, a melanin‐concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body‐composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non‐parametric input estimation (e.g., predicting energy intake from longitudinal body‐weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose‐prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly.
Collapse
Affiliation(s)
- P Gennemark
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - M Trägårdh
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden.,University of Warwick, School of Engineering, Coventry, UK
| | - D Lindén
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - K Ploj
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - A Johansson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - A Turnbull
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - B Carlsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - M Antonsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
3
|
Holt GM, Owen LJ, Till S, Cheng Y, Grant VA, Harden CJ, Corfe BM. Systematic literature review shows that appetite rating does not predict energy intake. Crit Rev Food Sci Nutr 2017; 57:3577-3582. [DOI: 10.1080/10408398.2016.1246414] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Guy M. Holt
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Lauren J. Owen
- University of Central Lancashire, Psychology Department, Preston, Lancashire, United Kingdom
| | - Sophie Till
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Yanying Cheng
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Vicky A. Grant
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Charlotte J. Harden
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Bernard M. Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Song J, Kim J. Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson's Disease. Front Aging Neurosci 2016; 8:65. [PMID: 27065205 PMCID: PMC4811934 DOI: 10.3389/fnagi.2016.00065] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 12/25/2022] Open
Abstract
The rates of metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, and cardiovascular disease (CVD), markedly increase with age. In recent years, studies have reported an association between metabolic changes and various pathophysiological mechanisms in the central nervous system (CNS) in patients with metabolic diseases. Oxidative stress and hyperglycemia in metabolic diseases lead to adverse neurophysiological phenomena, including neuronal loss, synaptic dysfunction, and improper insulin signaling, resulting in Parkinson’s disease (PD). In addition, several lines of evidence suggest that alterations of CNS environments by metabolic changes influence the dopamine neuronal loss, eventually affecting the pathogenesis of PD. Thus, we reviewed recent findings relating to degeneration of dopaminergic neurons during metabolic diseases. We highlight the fact that using a metabolic approach to manipulate degeneration of dopaminergic neurons can serve as a therapeutic strategy to attenuate pathology of PD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Engineering, Dongguk University Seoul, South Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University Seoul, South Korea
| |
Collapse
|
5
|
Systematic Literature Review Shows That Appetite Rating does Not Predict Energy Intake. Proc Nutr Soc 2016. [DOI: 10.1017/s0029665116001944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Maternal nicotine exposure during lactation alters food preference, anxiety-like behavior and the brain dopaminergic reward system in the adult rat offspring. Physiol Behav 2015; 149:131-41. [DOI: 10.1016/j.physbeh.2015.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/26/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022]
|
7
|
Gold MS, Badgaiyan RD, Blum K. A Shared Molecular and Genetic Basis for Food and Drug Addiction: Overcoming Hypodopaminergic Trait/State by Incorporating Dopamine Agonistic Therapy in Psychiatry. Psychiatr Clin North Am 2015; 38:419-62. [PMID: 26300032 DOI: 10.1016/j.psc.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This article focuses on the shared molecular and neurogenetics of food and drug addiction tied to the understanding of reward deficiency syndrome. Reward deficiency syndrome describes a hypodopaminergic trait/state that provides a rationale for commonality in approaches for treating long-term reduced dopamine function across the reward brain regions. The identification of the role of DNA polymorphic associations with reward circuitry has resulted in new understanding of all addictive behaviors.
Collapse
Affiliation(s)
- Mark S Gold
- Departments of Psychiatry & Behavioral Sciences, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Rivermend Health Scientific Advisory Board, 2300 Windy Ridge Parkway South East, Suite 210S, Atlanta, GA 30339, USA; Drug Enforcement Administration (DEA) Educational Foundation, Washington, DC, USA.
| | - Rajendra D Badgaiyan
- Laboratory of Advanced Radiochemistry and Molecular and Functioning Imaging, Department of Psychiatry, College of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA; Department of Psychiatry, Center for Clinical & Translational Science, Community Mental Health Institute, University of Vermont College of Medicine, University of Vermont, Burlington, VT, USA; Division of Applied Clinical Research, Dominion Diagnostics, LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA; Rivermend Health Scientific Advisory Board, Atlanta, GA, USA
| |
Collapse
|
8
|
Food and addiction among the ageing population. Ageing Res Rev 2015; 20:79-85. [PMID: 25449527 DOI: 10.1016/j.arr.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/25/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Obesity among the elderly is a growing public health concern. Among the various factors that may contribute to the current rates of obesity is the rewarding aspect of highly palatable foods and beverages, which may lead to overconsumption and excess caloric intake. The present review describes recent research supporting the hypothesis that, for some individuals, the consumption these highly palatable foods and beverages may lead to the development of addictive-like behaviors. In particular, the authors consider the relevance of this hypothesis to the ageing population.
Collapse
|
9
|
Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry 2015; 20:345-52. [PMID: 24840709 PMCID: PMC4351889 DOI: 10.1038/mp.2014.44] [Citation(s) in RCA: 406] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/24/2014] [Accepted: 03/17/2014] [Indexed: 02/02/2023]
Abstract
Why do we repeat choices that we know are bad for us? Decision making is characterized by the parallel engagement of two distinct systems, goal-directed and habitual, thought to arise from two computational learning mechanisms, model-based and model-free. The habitual system is a candidate source of pathological fixedness. Using a decision task that measures the contribution to learning of either mechanism, we show a bias towards model-free (habit) acquisition in disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, and obsessive-compulsive disorder. This favoring of model-free learning may underlie the repetitive behaviors that ultimately dominate in these disorders. Further, we show that the habit formation bias is associated with lower gray matter volumes in caudate and medial orbitofrontal cortex. Our findings suggest that the dysfunction in a common neurocomputational mechanism may underlie diverse disorders involving compulsion.
Collapse
|
10
|
Blum K, Thanos PK, Gold MS. Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol 2014; 5:919. [PMID: 25278909 PMCID: PMC4166230 DOI: 10.3389/fpsyg.2014.00919] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/01/2014] [Indexed: 01/08/2023] Open
Abstract
Obesity as a result of overeating as well as a number of well described eating disorders has been accurately considered to be a world-wide epidemic. Recently a number of theories backed by a plethora of scientifically sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Our laboratory has published on the concept known as Reward Deficiency Syndrome (RDS) which is a genetic and epigenetic phenomena leading to impairment of the brain reward circuitry resulting in a hypo-dopaminergic function. RDS involves the interactions of powerful neurotransmitters and results in abnormal craving behavior. A number of important facts which could help translate to potential therapeutic targets espoused in this focused review include: (1) consumption of alcohol in large quantities or carbohydrates binging stimulates the brain’s production of and utilization of dopamine; (2) in the meso-limbic system the enkephalinergic neurons are in close proximity, to glucose receptors; (3) highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; (4) a significant correlation between blood glucose and cerebrospinal fluid concentrations of homovanillic acid the dopamine metabolite; (5) 2-deoxyglucose (2DG), the glucose analog, in pharmacological doses is associated with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and fMRI in humans support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and for the most part, implicate the involvement of DA-modulated reward circuits in pathologic eating behaviors. Based on a consensus of neuroscience research treatment of both glucose and drug like cocaine, opiates should incorporate dopamine agonist therapy in contrast to current theories and practices that utilizes dopamine antagonistic therapy. Considering that up until now clinical utilization of powerful dopamine D2 agonists have failed due to chronic down regulation of D2 receptors newer targets based on novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of reward deficiency.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville FL, USA ; Department of Addiction Research & Therapy, Malibu Beach Recovery Center Malibu Beach, CA, USA
| | - Panayotis K Thanos
- Behavior Neuropharmacology and Neuroimaging Lab, Department of Psychology, State University of New York Stony Brook, NY, USA
| | - Mark S Gold
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville FL, USA ; Department of Addiction Research & Therapy, Malibu Beach Recovery Center Malibu Beach, CA, USA
| |
Collapse
|
11
|
McGill AT. Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption. Arch Public Health 2014; 72:31. [PMID: 25708599 PMCID: PMC4335399 DOI: 10.1186/2049-3258-72-31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 04/26/2014] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome's underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to 'test' this composite unifying theory it is important to show that the hypothesis and sub-theories pertain throughout the whole of human evolution and history up till the current era. Corollaries of the composite unifying theory of MetS are examined with respect to past under-nutrition and malnutrition since agriculture began 10,000 years ago. The effects of man-made pollutants on degenerative change are examined. Projections are then made from current to future patterns on the state of 'insufficient micronutrient and/or unbalanced high energy malnutrition with central obesity and metabolic dysregulation' or 'malnubesity'. Forecasts on human health are made on positive, proactive strategies using the composite unifying theory, and are extended to the wider human ecology of food production. A comparison is made with the outlook for humans if current assumptions and the status quo on causes and treatments are maintained. Areas of further research are outlined. A table of suggestions for possible public health action is included.
Collapse
Affiliation(s)
- Anne-Thea McGill
- School of Population Health and Human Nutrition Unit, Faculty of Medicine and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- B-Med Weight Control Consultancy, Auckland, New Zealand
| |
Collapse
|
12
|
McGill AT. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption. ACTA ACUST UNITED AC 2014; 72:30. [PMID: 25708524 PMCID: PMC4335398 DOI: 10.1186/2049-3258-72-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/26/2014] [Indexed: 12/30/2022]
Abstract
One line summary Metabolic syndrome and obesity-related co-morbidities are largely explained by co-adaptations to the energy use of the large human brain in the cortico-limbic-striatal and NRF2 systems. The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A ‘dual system’ is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing ‘common or garden’ food, appears to have occurred. Insufficient consumption of food micronutrients prevents optimal human NRF2 function. Inefficient oxidation of excess energy forces central and non-adipose cells to store excess toxic lipid. Oxidative stress and metabolic inflammation, or metaflammation, allow susceptibility to infectious, degenerative atherosclerotic cardiovascular, autoimmune, neurodegenerative and dysplastic diseases. Other relevant human-specific co-adaptations are examined, and encompass the unusual ability to store fat, certain vitamin pathways, the generalised but flexible intestine and microbiota, and slow development and longevity. This theory has significant past and future corollaries, which are explored in a separate article by McGill, A-T, in Archives of Public Health, 72: 31.
Collapse
Affiliation(s)
- Anne-Thea McGill
- School of Population Health and Human Nutrition Unit, Faculty of Medicine and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand ; B-Med Weight Control Consultancy, Auckland, New Zealand
| |
Collapse
|
13
|
|