1
|
Bratman GN, Bembibre C, Daily GC, Doty RL, Hummel T, Jacobs LF, Kahn PH, Lashus C, Majid A, Miller JD, Oleszkiewicz A, Olvera-Alvarez H, Parma V, Riederer AM, Sieber NL, Williams J, Xiao J, Yu CP, Spengler JD. Nature and human well-being: The olfactory pathway. SCIENCE ADVANCES 2024; 10:eadn3028. [PMID: 38748806 DOI: 10.1126/sciadv.adn3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 07/04/2024]
Abstract
The world is undergoing massive atmospheric and ecological change, driving unprecedented challenges to human well-being. Olfaction is a key sensory system through which these impacts occur. The sense of smell influences quality of and satisfaction with life, emotion, emotion regulation, cognitive function, social interactions, dietary choices, stress, and depressive symptoms. Exposures via the olfactory pathway can also lead to (anti-)inflammatory outcomes. Increased understanding is needed regarding the ways in which odorants generated by nature (i.e., natural olfactory environments) affect human well-being. With perspectives from a range of health, social, and natural sciences, we provide an overview of this unique sensory system, four consensus statements regarding olfaction and the environment, and a conceptual framework that integrates the olfactory pathway into an understanding of the effects of natural environments on human well-being. We then discuss how this framework can contribute to better accounting of the impacts of policy and land-use decision-making on natural olfactory environments and, in turn, on planetary health.
Collapse
Affiliation(s)
- Gregory N Bratman
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cecilia Bembibre
- Institute for Sustainable Heritage, University College London, London, UK
| | - Gretchen C Daily
- Natural Capital Project, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Woods Institute, Stanford University, Stanford, CA 94305, USA
| | - Richard L Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lucia F Jacobs
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H Kahn
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Connor Lashus
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Anna Oleszkiewicz
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Psychology, University of Wroclaw, Wrocław, Poland
| | | | | | - Anne M Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nancy Long Sieber
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jonathan Williams
- Air Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Jieling Xiao
- College of Architecture, Birmingham City University, Birmingham, UK
| | - Chia-Pin Yu
- School of Forestry and Resource Conservation, National Taiwan University, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan
| | - John D Spengler
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Ekanayake A, Peiris S, Ahmed B, Kanekar S, Grove C, Kalra D, Eslinger P, Yang Q, Karunanayaka P. A Review of the Role of Estrogens in Olfaction, Sleep and Glymphatic Functionality in Relation to Sex Disparity in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2024; 39:15333175241272025. [PMID: 39116421 PMCID: PMC11311174 DOI: 10.1177/15333175241272025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Several risk factors contribute to the development of Alzheimer's disease (AD), including genetics, metabolic health, cardiovascular history, and diet. It has been observed that women appear to face a higher risk of developing AD. Among the various hypotheses surrounding the gender disparity in AD, one pertains to the potential neuroprotective properties of estrogen. Compared to men, women are believed to be more susceptible to neuropathology due to the significant decline in circulating estrogen levels following menopause. Studies have shown, however, that estrogen replacement therapies in post-menopausal women do not consistently reduce the risk of AD. While menopause and estrogen levels are potential factors in the elevated incidence rates of AD among women, this review highlights the possible roles estrogen has in other pathways that may also contribute to the sex disparity observed in AD such as olfaction, sleep, and glymphatic functionality.
Collapse
Affiliation(s)
- Anupa Ekanayake
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Grodno State Medical University, Grodno, Belarus
| | - Senal Peiris
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Biyar Ahmed
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Sangam Kanekar
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Cooper Grove
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Deepak Kalra
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Paul Eslinger
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Qing Yang
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Billeci L, Sanmartin C, Tonacci A, Taglieri I, Bachi L, Ferroni G, Braceschi GP, Odello L, Venturi F. Wearable Sensors to Evaluate Autonomic Response to Olfactory Stimulation: The Influence of Short, Intensive Sensory Training. BIOSENSORS 2023; 13:bios13040478. [PMID: 37185553 PMCID: PMC10136665 DOI: 10.3390/bios13040478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
In the last few decades, while the sensory evaluation of edible products has been leveraged to make strategic decisions about many domains, the traditional descriptive analysis performed by a skilled sensory panel has been seen to be too complex and time-consuming for the industry needs, making it largely unsustainable in most cases. In this context, the study of the effectiveness of different methods for sensory training on panel performances represents a new trend in research activity. With this purpose, wearable sensors are applied to study physiological signals (ECG and skin conductance) concerned with the emotions in a cohort of volunteers undergoing a short, two-day (16 h) sensory training period related to wine tasting. The results were compared with a previous study based on a conventional three-month (65 h) period of sensory training. According to what was previously reported for long panel training, it was seen that even short, intensive sensory training modulated the ANS activity toward a less sympathetically mediated response as soon as odorous compounds become familiar. A large-scale application of shorter formative courses in this domain appears possible without reducing the effectiveness of the training, thus leading to money saving for academia and scientific societies, and challenging dropout rates that might affect longer courses.
Collapse
Affiliation(s)
- Lucia Billeci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Lorenzo Bachi
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Giuseppe Ferroni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | | | - Luigi Odello
- Centro Studi Assaggiatori Società Cooperativa, Galleria V. Veneto, 9, 25128 Brescia, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Centre for Complex Systems Studies, University of Pisa, Largo Bruno Pontecorvo, 2, 56126 Pisa, Italy
| |
Collapse
|
4
|
Bhatia-Dey N, Csoka AB, Heinbockel T. Chemosensory Ability and Sensitivity in Health and Disease: Epigenetic Regulation and COVID-19. Int J Mol Sci 2023; 24:4179. [PMID: 36835589 PMCID: PMC9959623 DOI: 10.3390/ijms24044179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Throughout the animal kingdom, our two chemical senses, olfaction and gustation, are defined by two primary factors: genomic architecture of the organisms and their living environment. During the past three years of the global COVID-19 pandemic, these two sensory modalities have drawn much attention at the basic science and clinical levels because of the strong association of olfactory and gustatory dysfunction with viral infection. Loss of our sense of smell alone, or together with a loss of taste, has emerged as a reliable indicator of COVID-19 infection. Previously, similar dysfunctions have been detected in a large cohort of patients with chronic conditions. The research focus remains on understanding the persistence of olfactory and gustatory disturbances in the post-infection phase, especially in cases with long-term effect of infection (long COVID). Also, both sensory modalities show consistent age-related decline in studies aimed to understand the pathology of neurodegenerative conditions. Some studies using classical model organisms show an impact on neural structure and behavior in offspring as an outcome of parental olfactory experience. The methylation status of specific odorant receptors, activated in parents, is passed on to the offspring. Furthermore, experimental evidence indicates an inverse correlation of gustatory and olfactory abilities with obesity. Such diverse lines of evidence emerging from basic and clinical research studies indicate a complex interplay of genetic factors, evolutionary forces, and epigenetic alterations. Environmental factors that regulate gustation and olfaction could induce epigenetic modulation. However, in turn, such modulation leads to variable effects depending on genetic makeup and physiological status. Therefore, a layered regulatory hierarchy remains active and is passed on to multiple generations. In the present review, we attempt to understand the experimental evidence that indicates variable regulatory mechanisms through multilayered and cross-reacting pathways. Our analytical approach will add to enhancement of prevailing therapeutic interventions and bring to the forefront the significance of chemosensory modalities for the evaluation and maintenance of long-term health.
Collapse
Affiliation(s)
| | | | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
5
|
Neurons, Nose, and Neurodegenerative Diseases: Olfactory Function and Cognitive Impairment. Int J Mol Sci 2023; 24:ijms24032117. [PMID: 36768440 PMCID: PMC9916823 DOI: 10.3390/ijms24032117] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Olfactory capacity declines with aging, but increasing evidence shows that smell dysfunction is one of the early signs of prodromal neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The study of olfactory ability and its role in neurodegenerative diseases arouses much interest in the scientific community. In neurology, olfactory impairment is a potential early marker for the onset of neurodegenerative diseases, but the underlying mechanism is poorly understood. The loss of smell is considered a clinical sign of early-stage disease and a marker of the disease's progression and cognitive impairment. Highlighting the importance of biological bases of smell and molecular pathways could be fundamental to improve neuroprotective and therapeutic strategies. We focused on the review articles and meta-analyses on olfactory and cognitive impairment. We depicted the neurobiology of olfaction and the most common olfactory tests in neurodegenerative diseases. In addition, we underlined the close relationship between the olfactory and cognitive deficit due to nasal neuroepithelium, which is a direct extension of the CNS in communication with the external environment. Neurons, Nose, and Neurodegenerative diseases highlights the role of olfactory dysfunction as a clinical marker for early stages of neurodegenerative diseases when it is associated with molecular, clinical, and neuropathological correlations.
Collapse
|
6
|
Alary J, Schaal B, Chotro G, Patris B, Destrez A. Mother’s scent for motherless neonates: Responses of artificially reared lambs to ewe’s inguinal wax odor. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2022.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Casares N, Alfaro M, Cuadrado-Tejedor M, Lasarte-Cia A, Navarro F, Vivas I, Espelosin M, Cartas-Cejudo P, Fernández-Irigoyen J, Santamaría E, García-Osta A, Lasarte JJ. Improvement of cognitive function in wild-type and Alzheimer´s disease mouse models by the immunomodulatory properties of menthol inhalation or by depletion of T regulatory cells. Front Immunol 2023; 14:1130044. [PMID: 37187754 PMCID: PMC10175945 DOI: 10.3389/fimmu.2023.1130044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
A complex network of interactions exists between the olfactory, immune and central nervous systems. In this work we intend to investigate this connection through the use of an immunostimulatory odorant like menthol, analyzing its impact on the immune system and the cognitive capacity in healthy and Alzheimer's Disease Mouse Models. We first found that repeated short exposures to menthol odor enhanced the immune response against ovalbumin immunization. Menthol inhalation also improved the cognitive capacity of immunocompetent mice but not in immunodeficient NSG mice, which exhibited very poor fear-conditioning. This improvement was associated with a downregulation of IL-1β and IL-6 mRNA in the brain´s prefrontal cortex, and it was impaired by anosmia induction with methimazole. Exposure to menthol for 6 months (1 week per month) prevented the cognitive impairment observed in the APP/PS1 mouse model of Alzheimer. Besides, this improvement was also observed by the depletion or inhibition of T regulatory cells. Treg depletion also improved the cognitive capacity of the APPNL-G-F/NL-G-F Alzheimer´s mouse model. In all cases, the improvement in learning capacity was associated with a downregulation of IL-1β mRNA. Blockade of the IL-1 receptor with anakinra resulted in a significant increase in cognitive capacity in healthy mice as well as in the APP/PS1 model of Alzheimer´s disease. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals, highlighting the potential of odors and immune modulators as therapeutic agents for CNS-related diseases.
Collapse
Affiliation(s)
- Noelia Casares
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- *Correspondence: Juan José Lasarte, ; Noelia Casares,
| | - María Alfaro
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Flor Navarro
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Isabel Vivas
- Department of Radiology, Clínica Universidad de Navarra, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María Espelosin
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ana García-Osta
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- *Correspondence: Juan José Lasarte, ; Noelia Casares,
| |
Collapse
|
8
|
The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136976. [PMID: 34209997 PMCID: PMC8297221 DOI: 10.3390/ijerph18136976] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Research studies that focus on understanding the onset of neurodegenerative pathology and therapeutic interventions to inhibit its causative factors, have shown a crucial role of olfactory bulb neurons as they transmit and propagate nerve impulses to higher cortical and limbic structures. In rodent models, removal of the olfactory bulb results in pathology of the frontal cortex that shows striking similarity with frontal cortex features of patients diagnosed with neurodegenerative disorders. Widely different approaches involving behavioral symptom analysis, histopathological and molecular alterations, genetic and environmental influences, along with age-related alterations in cellular pathways, indicate a strong correlation of olfactory dysfunction and neurodegeneration. Indeed, declining olfactory acuity and olfactory deficits emerge either as the very first symptoms or as prodromal symptoms of progressing neurodegeneration of classical conditions. Olfactory dysfunction has been associated with most neurodegenerative, neuropsychiatric, and communication disorders. Evidence revealing the dual molecular function of the olfactory receptor neurons at dendritic and axonal ends indicates the significance of olfactory processing pathways that come under environmental pressure right from the onset. Here, we review findings that olfactory bulb neuronal processing serves as a marker of neuropsychiatric and neurodegenerative disorders.
Collapse
|
9
|
Heinbockel T, Bhatia-Dey N, Shields VDC. Endocannabinoid-mediated neuromodulation in the main olfactory bulb at the interface of environmental stimuli and central neural processing. Eur J Neurosci 2021; 55:1002-1014. [PMID: 33724578 DOI: 10.1111/ejn.15186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
The olfactory system has become an important functional gateway to understand and analyze neuromodulation since olfactory dysfunction and deficits have emerged as prodromal and, at other times, as first symptoms of many of neurodegenerative, neuropsychiatric and communication disorders. Considering olfactory dysfunction as outcome of altered, damaged and/or inefficient olfactory processing, in the current review, we analyze how olfactory processing interacts with the endocannabinoid signaling system. In the human body, endocannabinoid synthesis is a natural and on-demand response to a wide range of physiological and environmental stimuli. Our current understanding of the response dynamics of the endocannabinoid system is based in large part on research advances in limbic system areas, such as the hippocampus and the amygdala. Functional interactions of this signaling system with olfactory processing and associated pathways are just emerging but appear to grow rapidly with multidimensional approaches. Recent work analyzing the crystal structure of endocannabinoid receptors bound to their agonists in a signaling complex has opened avenues for developing specific therapeutic drugs that could help with neuroinflammation, neurodegeneration, and alleviation/reduction of pain. We discuss the role of endocannabinoids as signaling molecules in the olfactory system and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Naina Bhatia-Dey
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Vonnie D C Shields
- Biological Sciences Department, Fisher College of Science and Mathematics, Towson University, Towson, MD, USA
| |
Collapse
|
10
|
Cameron EL, Møller P, Karn KS. Effects of COVID-19 on Sense of Smell: Human Factors/Ergonomics Considerations. HUMAN FACTORS 2021:18720821990162. [PMID: 33517793 PMCID: PMC7902264 DOI: 10.1177/0018720821990162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE We review the effects of COVID-19 on the human sense of smell (olfaction) and discuss implications for human-system interactions. We emphasize how critical smell is and how the widespread loss of smell due to COVID-19 will impact human-system interaction. BACKGROUND COVID-19 reduces the sense of smell in people who contract the disease. Thus far, olfaction has received relatively little attention from human factors/ergonomics professionals. While smell is not a primary means of human-system communication, humans rely on smell in many important ways related to both quality of life and safety. METHOD We briefly review and synthesize the rapidly expanding literature through September 2020 on the topic of smell loss caused by COVID-19. We interpret findings in terms of their relevance to human factors/ergonomics researchers and practitioners. RESULTS Since March 2020 dozens of articles have been published that report smell loss in COVID-19 patients. The prevalence and duration of COVID-19-related smell loss is still under investigation, but the available data suggest that it may leave many people with long-term deficits and distortions in sense of smell. CONCLUSION We suggest that the human factors/ergonomics community could become more aware of the importance of the sense of smell and focus on accommodating the increasing number of people with reduced olfactory performance. APPLICATION We present examples of how olfaction can augment human-system communication and how human factors/ergonomics professionals might accommodate people with olfactory dysfunction. While seemingly at odds, both of these goals can be achieved.
Collapse
Affiliation(s)
| | - Per Møller
- Per Møller Consulting, Bagsværd, Denmark
| | - Keith S. Karn
- Human Factors in Context LLC, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Tonacci A, Billeci L, Di Mambro I, Marangoni R, Sanmartin C, Venturi F. Wearable Sensors for Assessing the Role of Olfactory Training on the Autonomic Response to Olfactory Stimulation. SENSORS 2021; 21:s21030770. [PMID: 33498830 PMCID: PMC7865293 DOI: 10.3390/s21030770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Wearable sensors are nowadays largely employed to assess physiological signals derived from the human body without representing a burden in terms of obtrusiveness. One of the most intriguing fields of application for such systems include the assessment of physiological responses to sensory stimuli. In this specific regard, it is not yet known which are the main psychophysiological drivers of olfactory-related pleasantness, as the current literature has demonstrated the relationship between odor familiarity and odor valence, but has not clarified the consequentiality between the two domains. Here, we enrolled a group of university students to whom olfactory training lasting 3 months was administered. Thanks to the analysis of electrocardiogram (ECG) and galvanic skin response (GSR) signals at the beginning and at the end of the training period, we observed different autonomic responses, with higher parasympathetically-mediated response at the end of the period with respect to the first evaluation. This possibly suggests that an increased familiarity to the proposed stimuli would lead to a higher tendency towards relaxation. Such results could suggest potential applications to other domains, including personalized treatments based on odors and foods in neuropsychiatric and eating disorders.
Collapse
Affiliation(s)
- Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Lucia Billeci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
- Correspondence:
| | - Irene Di Mambro
- School of Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Roberto Marangoni
- Department of Biology, University of Pisa, 56127 Pisa, Italy;
- Institute of Biophysics, National Resarch Council of Italy (IBF-CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
- NexFood Srl, 57121 Livorno, Italy
| |
Collapse
|
12
|
Cho SW, Park TH. Comparative Evaluation of Sensitivity to Hexanal Between Human and Canine Olfactory Receptors. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Abstract
It is commonly believed that humans have a poor sense of smell compared to other mammalian species. However, this idea derives not from empirical studies of human olfaction but from a famous 19th-century anatomist's hypothesis that the evolution of human free will required a reduction in the proportional size of the brain's olfactory bulb. The human olfactory bulb is actually quite large in absolute terms and contains a similar number of neurons to that of other mammals. Moreover, humans have excellent olfactory abilities. We can detect and discriminate an extraordinary range of odors, we are more sensitive than rodents and dogs for some odors, we are capable of tracking odor trails, and our behavioral and affective states are influenced by our sense of smell.
Collapse
Affiliation(s)
- John P McGann
- Behavioral and Systems Neuroscience, Psychology Department, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Zucco GM, Schaal B, Olsson MJ, Croy I. Applied olfactory cognition. Front Psychol 2014; 5:873. [PMID: 25161637 PMCID: PMC4130180 DOI: 10.3389/fpsyg.2014.00873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/22/2014] [Indexed: 01/19/2023] Open
Affiliation(s)
- Gesualdo M Zucco
- Department of General Psychology, Faculty of Medicine, University of Padova Padova, Italy
| | - Benoist Schaal
- Centre Européen des Sciences du Goût, CNRS Dijon, France
| | - Mats J Olsson
- Division for Psychology, Department of Clinical Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Ilona Croy
- Department of Clinical Neurophysiology, University of Gothenburg Gothenburg, Sweden
| |
Collapse
|