1
|
Hu F, Sinha D, Diamond S. Perception of wide-expanse symmetric patterns. Vision Res 2024; 223:108455. [PMID: 39029357 DOI: 10.1016/j.visres.2024.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024]
Abstract
Humans are remarkably proficient at the task of distinguishing between symmetric and non-symmetric visual patterns. The neural mechanisms underlying this ability are still unclear. Here we examine symmetry perception along a dimension that can help place some constraints on the nature of these mechanisms. Specifically, we study whether and how human performance on the task of classifying patterns as bilaterally symmetric versus non-symmetric changes as a function of the spatial separation between the flanks. Working with briefly flashed stimuli that embody flank separations of 6 degrees to 54 degrees, we find that classification performance declines significantly with increasing inter-flank distance, but remains well above chance even at the largest separations. Response time registers a progressive increase as the space between the flanks expands. Baseline studies show that these performance changes cannot be attributed solely to reduced acuity in the visual periphery, or increased conduction times for relaying information from those locations. The findings argue for the need to adapt current feedforward models of symmetry perception to be more consistent with the empirical data, and also point to the possible involvement of recurrent processing, as suggested by recent computational results.
Collapse
Affiliation(s)
- Fengping Hu
- Department of Psychology, New York University, United States
| | - Darius Sinha
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sidney Diamond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, United States.
| |
Collapse
|
2
|
McAfee L, Heath Z, Anderson W, Hozi M, Orr JW, Kang YA. The development of an automated microscope image tracking and analysis system. Biotechnol Prog 2024:e3490. [PMID: 38888043 DOI: 10.1002/btpr.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Microscopy image analysis plays a crucial role in understanding cellular behavior and uncovering important insights in various biological and medical research domains. Tracking cells within the time-lapse microscopy images is a fundamental technique that enables the study of cell dynamics, interactions, and migration. While manual cell tracking is possible, it is time-consuming and prone to subjective biases that impact results. In order to solve this issue, we sought to create an automated software solution, named cell analyzer, which is able to track cells within microscopy images with minimal input required from the user. The program of cell analyzer was written in Python utilizing the open source computer vision (OpenCV) library and featured a graphical user interface that makes it easy for users to access. The functions of all codes were verified through closeness, area, centroid, contrast, variance, and cell tracking test. Cell analyzer primarily utilizes image preprocessing and edge detection techniques to isolate cell boundaries for detection and analysis. It uniquely recorded the area, displacement, speed, size, and direction of detected cell objects and visualized the data collected automatically for fast analysis. Our cell analyzer provides an easy-to-use tool through a graphical user interface for tracking cell motion and analyzing quantitative cell images.
Collapse
Affiliation(s)
- Lillian McAfee
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, Newberg, Oregon, USA
| | - Zach Heath
- Department of Computer science, George Fox University, Newberg, Oregon, USA
| | - William Anderson
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, Newberg, Oregon, USA
| | - Marvin Hozi
- Department of Computer science, George Fox University, Newberg, Oregon, USA
| | - John Walker Orr
- Department of Computer science, George Fox University, Newberg, Oregon, USA
| | - Youngbok Abraham Kang
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, Newberg, Oregon, USA
| |
Collapse
|
3
|
Schmuckler MA, Moranis R. Rhythm contour drives musical memory. Atten Percept Psychophys 2023; 85:2502-2514. [PMID: 36991289 DOI: 10.3758/s13414-023-02700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Listeners' use of contour information as a basis for memory of rhythmic patterns was explored in two experiments. Both studies employed a short-term memory paradigm in which listeners heard a standard rhythm, followed by a comparison rhythm, and judged whether the comparison was the same as the standard. Comparison rhythms included exact repetitions of the standard, same contour rhythms in which the relative interval durations of successive notes (but not the absolute durations of the notes themselves) were the same as the standard, and different contour rhythms in which the relative duration intervals of successive notes differed from the standard. Experiment 1 employed metric rhythms, whereas Experiment 2 employed ametric rhythms. D-prime analyses revealed that, in both experiments, listeners showed better discrimination for different contour rhythms relative to same contour rhythms. Paralleling classic work on melodic contour, these findings indicate that the concept of contour is both relevant to one's characterization of the rhythm of musical patterns and influences short-term memory for such patterns.
Collapse
Affiliation(s)
- Mark A Schmuckler
- Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON, M1C 1A4, Canada.
| | | |
Collapse
|
4
|
Wong-Kee-You AMB, Loveridge-Easther C, Mueller C, Simon N, Good WV. The impact of early exposure to general anesthesia on visual and neurocognitive development. Surv Ophthalmol 2022; 68:539-555. [PMID: 35970232 DOI: 10.1016/j.survophthal.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Every year millions of children are exposed to general anesthesia while undergoing surgical and diagnostic procedures. In the field of ophthalmology, 44,000 children are exposed to general anesthesia annually for strabismus surgery alone. While it is clear that general anesthesia is necessary for sedation and pain minimization during surgical procedures, the possibility of neurotoxic impairments from its exposure is of concern. In animals there is strong evidence linking early anesthesia exposure to abnormal neural development. but in humans the effects of anesthesia are debated. In humans many aspects of vision develop within the first year of life, making the visual system vulnerable to early adverse experiences and potentially vulnerable to early exposure to general anesthesia. We attempt to address whether the visual system is affected by early postnatal exposure to general anesthesia. We first summarize key mechanisms that could account for the neurotoxic effects of general anesthesia on the developing brain and review existing literature on the effects of early anesthesia exposure on the visual system in both animals and humans and on neurocognitive development in humans. Finally, we conclude by proposing future directions for research that could address unanswered questions regarding the impact of general anesthesia on visual development.
Collapse
Affiliation(s)
| | - Cam Loveridge-Easther
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA; University of Auckland, Auckland, New Zealand
| | - Claudia Mueller
- Sutter Health, San Francisco, CA, USA; Stanford Children's Health, Palo Alto, CA, USA
| | | | - William V Good
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
| |
Collapse
|
5
|
Mihaylova MS, Bocheva NB, Totev TT, Staykova SN. Visual Noise Effect on Contour Integration and Gaze Allocation in Autism Spectrum Disorder. Front Neurosci 2021; 15:623663. [PMID: 33633537 PMCID: PMC7900628 DOI: 10.3389/fnins.2021.623663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Contradictory results have been obtained in the studies that compare contour integration abilities in Autism Spectrum Disorders (ASDs) and typically developing individuals. The present study aimed to explore the limiting factors of contour integration ability in ASD and verify the role of the external visual noise by a combination of psychophysical and eye-tracking approaches. To this aim, 24 children and adolescents with ASD and 32 age-matched participants with typical development had to detect the presence of contour embedded among similar Gabor elements in a Yes/No procedure. The results obtained showed that the responses in the group with ASD were not only less accurate but also were significantly slower compared to the control group at all noise levels. The detection performance depended on the group differences in addition to the effect of the intellectual functioning of the participants from both groups. The comparison of the agreement and accuracy of the responses in the double-pass experiment showed that the results of the participants with ASD are more affected by the increase of the external noise. It turned out that the internal noise depends on the level of the added external noise: the difference between the two groups was non-significant at the low external noise and significant at the high external noise. In accordance with the psychophysical results, the eye-tracking data indicated a larger gaze allocation area in the group with autism. These findings may imply higher positional uncertainty in ASD due to the inability to maintain the information of the contour location from previous presentations and interference from noise elements in the contour vicinity. Psychophysical and eye-tracking data suggest lower efficiency in using stimulus information in the ASD group that could be caused by fixation instability and noisy and unstable perceptual template that affects noise filtering.
Collapse
Affiliation(s)
- Milena Slavcheva Mihaylova
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadejda Bogdanova Bocheva
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetalin Totev Totev
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
6
|
Danka Mohammed CP, Khalil R. Postnatal Development of Visual Cortical Function in the Mammalian Brain. Front Syst Neurosci 2020; 14:29. [PMID: 32581733 PMCID: PMC7296053 DOI: 10.3389/fnsys.2020.00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
This review aims to discuss (1) the refinement of mammalian visual cortical circuits and the maturation of visual functions they subserve in primary visual cortex (V1) and other visual cortical areas, and (2) existing evidence supporting the notion of differential rates of maturation of visual functions in different species. It is well known that different visual functions and their underlying circuitry mature and attain adultlike characteristics at different stages in postnatal development with varying growth rates. The developmental timecourse and duration of refinement varies significantly both in V1 of various species and among different visual cortical areas; while basic visual functions like spatial acuity mature earlier requiring less time, higher form perception such as contour integration is more complex and requires longer postnatal time to refine. This review will highlight the importance of systematic comparative analysis of the differential rates of refinement of visual circuitry and function as that may help reveal underlying key mechanisms necessary for healthy visual development during infancy and adulthood. This type of approach will help future studies to establish direct links between various developmental aspects of different visual cortical areas in both human and animal models; thus enhancing our understanding of vision related neurological disorders and their potential therapeutic remedies.
Collapse
Affiliation(s)
- Chand Parvez Danka Mohammed
- Biosciences and Bioengineering Research Institute (BBRI), American University of Sharjah, Sharjah, United Arab Emirates
| | - Reem Khalil
- Biosciences and Bioengineering Research Institute (BBRI), American University of Sharjah, Sharjah, United Arab Emirates.,Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Cheng K, Yang K, Qin L, Zhuo Y, Yan H. Perceptual load modulates contour integration in conscious and unconscious states. PeerJ 2019; 7:e7550. [PMID: 31497404 PMCID: PMC6708573 DOI: 10.7717/peerj.7550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Previous research has documented that contour detection and integration may either be affected by local features such as the distances between elements or by high-level cognitive factors such as attention in our visual system. Less is known about how low and high level factors interact to influence contour integration. In this paper, we investigated how attention modulates contour integration through saliency (different element spacing) and topological propert ies (circle or S-shaped) when the state of conscious awareness is manipulated. A modified inattentional blindness (IB) combined with the Posner cuing paradigm was adopted in our three-phased experiment (unconscious-training-conscious). Attention was manipulated with high or low perceptual load for a foveal go/no-go task. Cuing effects were utilized to assess the covert processing of contours prior to a peripheral orientation discrimination task. We found that (1) salient circles and S-contours induced different cuing effects under low perceptual load but not with high load; (2) no consistent pattern of cuing effects was found for non-salient contours in all the conditions; (3) a positive cuing effect was observed for salient circles either consciously or unconsciously while a negative cuing effect occurred for salient S-contours only consciously. These results suggest that conscious awareness plays a pivotal role in coordinating a closure effect with the level of perceptual load. Only salient circles can be successfully integrated in an unconscious state under low perceptual load although both salient circles and S-contours can be done consciously. Our findings support a bi-directional mechanism that low-level sensory features interact with high-level cognitive factors in contour integration.
Collapse
Affiliation(s)
- Kaiwen Cheng
- MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Foreign Languages, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Keyu Yang
- MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Long Qin
- MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yixuan Zhuo
- MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hongmei Yan
- MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Abstract
The primary visual cortex (V1) is the first cortical area that processes visual information. Normal development of V1 depends on binocular vision during the critical period, and age-related losses of vision are linked with neurobiological changes in V1. Animal studies have provided important details about the neurobiological mechanisms in V1 that support normal vision or are changed by visual diseases. There is very little information, however, about those neurobiological mechanisms in human V1. That lack of information has hampered the translation of biologically inspired treatments from preclinical models to effective clinical treatments. We have studied human V1 to characterize the expression of neurobiological mechanisms that regulate visual perception and neuroplasticity. We have identified five stages of development for human V1 that start in infancy and continue across the life span. Here, we describe these stages, compare them with visual and anatomical milestones, and discuss implications for translating treatments for visual disorders that depend on neuroplasticity of V1 function.
Collapse
Affiliation(s)
- Caitlin R Siu
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, ON, Canada
| | - Kathryn M Murphy
- McMaster Integrative Neuroscience Discovery and Study (MiNDS) Program, McMaster University, Hamilton, ON, Canada.,Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan. J Neurosci 2017; 37:6031-6042. [PMID: 28554889 DOI: 10.1523/jneurosci.2304-16.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022] Open
Abstract
Traditionally, human primary visual cortex (V1) has been thought to mature within the first few years of life, based on anatomical studies of synapse formation, and establishment of intracortical and intercortical connections. Human vision, however, develops well beyond the first few years. Previously, we found prolonged development of some GABAergic proteins in human V1 (Pinto et al., 2010). Yet as >80% of synapses in V1 are excitatory, it remains unanswered whether the majority of synapses regulating experience-dependent plasticity and receptive field properties develop late, like their inhibitory counterparts. To address this question, we used Western blotting of postmortem tissue from human V1 (12 female, 18 male) covering a range of ages. Then we quantified a set of postsynaptic glutamatergic proteins (PSD-95, GluA2, GluN1, GluN2A, GluN2B), calculated indices for functional pairs that are developmentally regulated (GluA2:GluN1; GluN2A:GluN2B), and determined interindividual variability. We found early loss of GluN1, prolonged development of PSD-95 and GluA2 into late childhood, protracted development of GluN2A until ∼40 years, and dramatic loss of GluN2A in aging. The GluA2:GluN1 index switched at ∼1 year, but the GluN2A:GluN2B index continued to shift until ∼40 year before changing back to GluN2B in aging. We also identified young childhood as a stage of heightened interindividual variability. The changes show that human V1 develops gradually through a series of five orchestrated stages, making it likely that V1 participates in visual development and plasticity across the lifespan.SIGNIFICANCE STATEMENT Anatomical structure of human V1 appears to mature early, but vision changes across the lifespan. This discrepancy has fostered two hypotheses: either other aspects of V1 continue changing, or later changes in visual perception depend on extrastriate areas. Previously, we showed that some GABAergic synaptic proteins change across the lifespan, but most synapses in V1 are excitatory leaving unanswered how they change. So we studied expression of glutamatergic proteins in human V1 to determine their development. Here we report prolonged maturation of glutamatergic proteins, with five stages that map onto life-long changes in human visual perception. Thus, the apparent discrepancy between development of structure and function may be explained by life-long synaptic changes in human V1.
Collapse
|
10
|
Khuu SK, Cham J, Hayes A. The Effect of Local Orientation Change on the Detection of Contours Defined by Constant Curvature: Psychophysics and Image Statistics. Front Psychol 2017; 7:2069. [PMID: 28144224 PMCID: PMC5239794 DOI: 10.3389/fpsyg.2016.02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/21/2016] [Indexed: 11/13/2022] Open
Abstract
In the present study, we investigated the detection of contours defined by constant curvature and the statistics of curved contours in natural scenes. In Experiment 1, we examined the degree to which human sensitivity to contours is affected by changing the curvature angle and disrupting contour curvature continuity by varying the orientation of end elements. We find that (1) changing the angle of contour curvature decreased detection performance, while (2) end elements oriented in the direction (i.e., clockwise) of curvature facilitated contour detection regardless of the curvature angle of the contour. In Experiment 2 we further established that the relative effect of end—element orientation on contour detection was not only dependent on their orientation (collinear or cocircular), but also their spatial separation from the contour, and whether the contour shape was curved or not (i.e., C-shaped or S-shaped). Increasing the spatial separation of end-elements reduced contour detection performance regardless of their orientation or the contour shape. However, at small separations, cocircular end-elements facilitated the detection of C-shaped contours, but not S-shaped contours. The opposite result was observed for collinear end-elements, which improved the detection of S- shaped, but not C-shaped contours. These dissociative results confirmed that the visual system specifically codes contour curvature, but the association of contour elements occurs locally. Finally, we undertook an analysis of natural images that mapped contours with a constant angular change and determined the frequency of occurrence of end elements with different orientations. Analogous to our behavioral data, this image analysis revealed that the mapped end elements of constantly curved contours are likely to be oriented clockwise to the angle of curvature. Our findings indicate that the visual system is selectively sensitive to contours defined by constant curvature and that this might reflect the properties of curved contours in natural images.
Collapse
Affiliation(s)
- Sieu K. Khuu
- School of Optometry and Vision Science, University of New South WalesSydney, NSW, Australia
- *Correspondence: Sieu K. Khuu
| | - Joey Cham
- Department of Psychology, The University of Hong KongHong Kong, Hong Kong
| | - Anthony Hayes
- Department of Psychology, The University of Hong KongHong Kong, Hong Kong
| |
Collapse
|