1
|
McMillen P, Levin M. Collective intelligence: A unifying concept for integrating biology across scales and substrates. Commun Biol 2024; 7:378. [PMID: 38548821 PMCID: PMC10978875 DOI: 10.1038/s42003-024-06037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of biology is the use of a multiscale architecture, ranging from molecular networks to cells, tissues, organs, whole bodies, and swarms. Crucially however, biology is not only nested structurally, but also functionally: each level is able to solve problems in distinct problem spaces, such as physiological, morphological, and behavioral state space. Percolating adaptive functionality from one level of competent subunits to a higher functional level of organization requires collective dynamics: multiple components must work together to achieve specific outcomes. Here we overview a number of biological examples at different scales which highlight the ability of cellular material to make decisions that implement cooperation toward specific homeodynamic endpoints, and implement collective intelligence by solving problems at the cell, tissue, and whole-organism levels. We explore the hypothesis that collective intelligence is not only the province of groups of animals, and that an important symmetry exists between the behavioral science of swarms and the competencies of cells and other biological systems at different scales. We then briefly outline the implications of this approach, and the possible impact of tools from the field of diverse intelligence for regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Chiolerio A, Vitiello G, Dehshibi MM, Adamatzky A. Living Plants Ecosystem Sensing: A Quantum Bridge between Thermodynamics and Bioelectricity. Biomimetics (Basel) 2023; 8:biomimetics8010122. [PMID: 36975352 PMCID: PMC10046232 DOI: 10.3390/biomimetics8010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
The in situ measurement of the bioelectric potential in xilematic and floematic superior plants reveals valuable insights into the biological activity of these organisms, including their responses to lunar and solar cycles and collective behaviour. This paper reports on the “Cyberforest Experiment” conducted in the open-air Paneveggio forest in Valle di Fiemme, Trento, Italy, where spruce (i.e., Picea abies) is cultivated. Our analysis of the bioelectric potentials reveals a strong correlation between higher-order complexity measurements and thermodynamic entropy and suggests that bioelectrical signals can reflect the metabolic activity of plants. Additionally, temporal correlations of bioelectric signals from different trees may be precisely synchronized or may lag behind. These correlations are further explored through the lens of quantum field theory, suggesting that the forest can be viewed as a collective array of in-phase elements whose correlation is naturally tuned depending on the environmental conditions. These results provide compelling evidence for the potential of living plant ecosystems as environmental sensors.
Collapse
Affiliation(s)
- Alessandro Chiolerio
- Center for Converging Technologies, Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 16065 Genova, Italy
- Unconventional Computing Laboratory, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
- The Cyberforest Experiment, Costa Bocche, Località Paneveggio, 38037 Predazzo, Italy
- Correspondence:
| | - Giuseppe Vitiello
- The Cyberforest Experiment, Costa Bocche, Località Paneveggio, 38037 Predazzo, Italy
- Department of Physics “E.R. Caianiello”, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Mohammad Mahdi Dehshibi
- Unconventional Computing Laboratory, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
- The Cyberforest Experiment, Costa Bocche, Località Paneveggio, 38037 Predazzo, Italy
- Faculty of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
- The Cyberforest Experiment, Costa Bocche, Località Paneveggio, 38037 Predazzo, Italy
| |
Collapse
|
3
|
Rodriguez-Quintero WD, Moreno-Chacón M, Carrasco-Urra F, Saldaña A. From dark to darkness, negative phototropism influences the support-tree location of the massive woody climber Hydrangea serratifolia (Hydrangeaceae) in a Chilean temperate rainforest. PLANT SIGNALING & BEHAVIOR 2022; 17:2122244. [PMID: 36476262 PMCID: PMC9733698 DOI: 10.1080/15592324.2022.2122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/17/2023]
Abstract
Climbing plants rely on suitable support to provide the light conditions they require in the canopy. Negative phototropism is a directional search behavior proposed to detect a support-tree, which indicates growth or movement away from light, based on light attenuation. In a Chilean temperate rainforest, we addressed whether the massive woody climber Hydrangea serratifolia (H. et A.) F. Phil (Hydrangeaceae) presents a support-tree location pattern influenced by light availability. We analyzed direction and light received in two groups of juvenile shoots: searching shoots (SS), with plagiotropic (creeping) growth vs. ascending shoots (AS), with orthotropic growth. We found that, in accordance with light attenuation, SS and AS used directional orientation to search and then ascend host trees. The light available to H. serratifolia searching shoots was less than that of the general forest understory; the directional orientation in both groups showed a significant deviation from a random distribution, with no circular statistical difference between them. Circular-linear regression indicated a relationship between directional orientations and light availability. Negative phototropism encodes the light environment's heterogeneous spatial and temporal information, guiding the shoot apex to the most shaded part of the support-tree base, the climbing start point.
Collapse
Affiliation(s)
- W. David Rodriguez-Quintero
- Departamento de Botánica, Universidad de Concepción, Concepción, Chile
- Centro de Ecología Aplicada Ltda, Principe de Gales6465La Reina, Chile
| | | | | | - Alfredo Saldaña
- Departamento de Botánica, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
4
|
Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1578. [PMID: 34558231 DOI: 10.1002/wcs.1578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Unlike animal behavior, behavior in plants is traditionally assumed to be completely determined either genetically or environmentally. Under this assumption, plants are usually considered to be noncognitive organisms. This view nonetheless clashes with a growing body of empirical research that shows that many sophisticated cognitive capabilities traditionally assumed to be exclusive to animals are exhibited by plants too. Yet, if plants can be considered cognitive, even in a minimal sense, can they also be considered conscious? Some authors defend that the quest for plant consciousness is worth pursuing, under the premise that sentience can play a role in facilitating plant's sophisticated behavior. The goal of this article is not to provide a positive argument for plant cognition and consciousness, but to invite a constructive, empirically informed debate about it. After reviewing the empirical literature concerning plant cognition, we introduce the reader to the emerging field of plant neurobiology. Research on plant electrical and chemical signaling can help shed light into the biological bases for plant sentience. To conclude, we shall present a series of approaches to scientifically investigate plant consciousness. In sum, we invite the reader to consider the idea that if consciousness boils down to some form of biological adaptation, we should not exclude a priori the possibility that plants have evolved their own phenomenal experience of the world. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Philosophy > Consciousness Neuroscience > Cognition.
Collapse
Affiliation(s)
- Miguel Segundo-Ortin
- Department of Philosophy and Religious Studies, Faculty of Humanities, Utrecht University, Utrecht, The Netherlands
| | - Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
5
|
Hung TW. Nonhuman rationality: a predictive coding perspective. Cogn Process 2021; 22:353-362. [PMID: 33404900 DOI: 10.1007/s10339-020-01009-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
How can we rethink 'rationality' in the wake of animal and artificial intelligence studies? Can nonhuman systems be rational in any nontrivial sense? In this paper, we propose that all organisms, under certain circumstances, exhibit rationality to a diverse degree and aspect in the sense of the standard picture (SP): Their inferential processes conform to logic and probability rules. We first show that according to Calvo and Friston (J R Soc Interface 14(131):20170096, 2017) and Orlandi (2018), all biological systems must embody a top-down process (active inference) to minimize free energy. Next, based on Maddy's (Second philosophy, Oxford University Press, Oxford, 2007; The logical must: Wittgenstein on logic, Oxford University Press, Oxford, 2014) analysis, we argue that this inferential process conforms to logic and probability rules; thus, it satisfies the SP, which explains the rudimentary logic and arithmetic (e.g., categorizing and numbering) found among pigeons and mice. We also hold that the mammalian brain is only one among many ways of implementing rationality. Finally, we discuss data from microorganisms to support this view.
Collapse
Affiliation(s)
- Tzu-Wei Hung
- Institute of European and American Studies, Academia Sinica, Taipei City, Taiwan.
| |
Collapse
|
6
|
Frazier PA, Jamone L, Althoefer K, Calvo P. Plant Bioinspired Ecological Robotics. Front Robot AI 2020; 7:79. [PMID: 33501246 PMCID: PMC7805641 DOI: 10.3389/frobt.2020.00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are movers, but the nature of their movement differs dramatically from that of creatures that move their whole body from point A to point B. Plants grow to where they are going. Bio-inspired robotics sometimes emulates plants' growth-based movement; but growing is part of a broader system of movement guidance and control. We argue that ecological psychology's conception of "information" and "control" can simultaneously make sense of what it means for a plant to navigate its environment and provide a control scheme for the design of ecological plant-inspired robotics. In this effort, we will outline several control laws and give special consideration to the class of control laws identified by tau theory, such as time to contact.
Collapse
Affiliation(s)
- P. Adrian Frazier
- MINTLab - Minimal Intelligence Lab, Universidad de Murcia, Murcia, Spain
- Center for the Ecological Study of Perception and Action University of Connecticut, Storrs, CT, United States
| | - Lorenzo Jamone
- Centre for Advanced Robotics @ Queen Mary (ARQ), School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Kaspar Althoefer
- Centre for Advanced Robotics @ Queen Mary (ARQ), School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Paco Calvo
- MINTLab - Minimal Intelligence Lab, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
7
|
Sims M. Minimal perception: Responding to the challenges of perceptual constancy and veridicality with plants. PHILOSOPHICAL PSYCHOLOGY 2019. [DOI: 10.1080/09515089.2019.1646898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthew Sims
- Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Adamatzky A. Plant leaf computing. Biosystems 2019; 182:59-64. [DOI: 10.1016/j.biosystems.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 01/05/2023]
|
9
|
Segundo-Ortin M, Calvo P. Are plants cognitive? A reply to Adams. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2019; 73:64-71. [PMID: 30914125 DOI: 10.1016/j.shpsa.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 12/05/2018] [Indexed: 05/21/2023]
Abstract
According to F. Adams [this journal, vol. 68, 2018] cognition cannot be realized in plants or bacteria. In his view, plants and bacteria respond to the here-and-now in a hardwired, inflexible manner, and are therefore incapable of cognitive activity. This article takes issue with the pursuit of plant cognition from the perspective of an empirically informed philosophy of plant neurobiology. As we argue, empirical evidence shows, contra Adams, that plant behavior is in many ways analogous to animal behavior. This renders plants suitable to be described as cognitive agents in a non-metaphorical way. Sections two to four review the arguments offered by Adams in light of scientific evidence on plant adaptive behavior, decision-making, anticipation, as well as learning and memory. Section five introduces the 'phyto-nervous' system of plants. To conclude, section six resituates the quest for plant cognition into a broader approach in cognitive science, as represented by enactive and ecological schools of thought. Overall, we aim to motivate the idea that plants may be considered genuine cognitive agents. Our hope is to help propel public awareness and discussion of plant intelligence once appropriately stripped of anthropocentric preconceptions of the sort that Adams' position appears to exemplify.
Collapse
Affiliation(s)
| | - Paco Calvo
- Minimal Intelligence Lab (MINT Lab), Universidad de Murcia, Spain.
| |
Collapse
|
10
|
Yokawa K, Kagenishi T, Pavlovič A, Gall S, Weiland M, Mancuso S, Baluška F. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. ANNALS OF BOTANY 2018; 122:747-756. [PMID: 29236942 PMCID: PMC6215046 DOI: 10.1093/aob/mcx155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 05/09/2023]
Abstract
Background and Aims Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans. Methods A single-lens reflex camera was used to follow organ movements in plants before, during and after recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle trafficking. Electrical signals were recorded using a surface AgCl electrode. Key Results Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, were also affected by all anaesthetics tested. Conclusions Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia.
Collapse
Affiliation(s)
- K Yokawa
- IZMB, University of Bonn, Bonn, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - T Kagenishi
- IZMB, University of Bonn, Bonn, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - A Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - S Gall
- IZMB, University of Bonn, Bonn, Germany
| | - M Weiland
- IZMB, University of Bonn, Bonn, Germany
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | - S Mancuso
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | - F Baluška
- IZMB, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Jedlicka P. Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology? Front Mol Neurosci 2017; 10:366. [PMID: 29163041 PMCID: PMC5681944 DOI: 10.3389/fnmol.2017.00366] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system's behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics.
Collapse
|
12
|
Calvo P, Friston K. Predicting green: really radical (plant) predictive processing. J R Soc Interface 2017; 14:20170096. [PMID: 28637913 PMCID: PMC5493793 DOI: 10.1098/rsif.2017.0096] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
In this article we account for the way plants respond to salient features of their environment under the free-energy principle for biological systems. Biological self-organization amounts to the minimization of surprise over time. We posit that any self-organizing system must embody a generative model whose predictions ensure that (expected) free energy is minimized through action. Plants respond in a fast, and yet coordinated manner, to environmental contingencies. They pro-actively sample their local environment to elicit information with an adaptive value. Our main thesis is that plant behaviour takes place by way of a process (active inference) that predicts the environmental sources of sensory stimulation. This principle, we argue, endows plants with a form of perception that underwrites purposeful, anticipatory behaviour. The aim of the article is to assess the prospects of a radical predictive processing story that would follow naturally from the free-energy principle for biological systems; an approach that may ultimately bear upon our understanding of life and cognition more broadly.
Collapse
Affiliation(s)
- Paco Calvo
- EIDYN Research Centre, and Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- MINT Lab, Departamento de Filosofía, Universidad de Murcia, Murcia, Spain
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology UCL, 12 Queen Square, London, UK
| |
Collapse
|