Bassani HF, Araujo AFR. A neural network architecture for learning word-referent associations in multiple contexts.
Neural Netw 2019;
117:249-267. [PMID:
31195207 DOI:
10.1016/j.neunet.2019.05.017]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
This article proposes a biologically inspired neurocomputational architecture which learns associations between words and referents in different contexts, considering evidence collected from the literature of Psycholinguistics and Neurolinguistics. The multi-layered architecture takes as input raw images of objects (referents) and streams of word's phonemes (labels), builds an adequate representation, recognizes the current context, and associates label with referents incrementally, by employing a Self-Organizing Map which creates new association nodes (prototypes) as required, adjusts the existing prototypes to better represent the input stimuli and removes prototypes that become obsolete/unused. The model takes into account the current context to retrieve the correct meaning of words with multiple meanings. Simulations show that the model can reach up to 78% of word-referent association accuracy in ambiguous situations and approximates well the learning rates of humans as reported by three different authors in five Cross-Situational Word Learning experiments, also displaying similar learning patterns in the different learning conditions.
Collapse