1
|
Ossadtchi A, Semenkov I, Zhuravleva A, Kozunov V, Serikov O, Voloshina E. Representational dissimilarity component analysis (ReDisCA). Neuroimage 2024; 301:120868. [PMID: 39343110 DOI: 10.1016/j.neuroimage.2024.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The principle of Representational Similarity Analysis (RSA) posits that neural representations reflect the structure of encoded information, allowing exploration of spatial and temporal organization of brain information processing. Traditional RSA when applied to EEG or MEG data faces challenges in accessing activation time series at the brain source level due to modeling complexities and insufficient geometric/anatomical data. To overcome this, we introduce Representational Dissimilarity Component Analysis (ReDisCA), a method for estimating spatial-temporal components in EEG or MEG responses aligned with a target representational dissimilarity matrix (RDM). ReDisCA yields informative spatial filters and associated topographies, offering insights into the location of "representationally relevant" sources. Applied to evoked response time series, ReDisCA produces temporal source activation profiles with the desired RDM. Importantly, while ReDisCA does not require inverse modeling its output is consistent with EEG and MEG observation equation and can be used as an input to rigorous source localization procedures. Demonstrating ReDisCA's efficacy through simulations and comparison with conventional methods, we show superior source localization accuracy and apply the method to real EEG and MEG datasets, revealing physiologically plausible representational structures without inverse modeling. ReDisCA adds to the family of inverse modeling free methods such as independent component analysis (Makeig, 1995), Spatial spectral decomposition (Nikulin, 2011), and Source power comodulation (Dähne, 2014) designed for extraction sources with desired properties from EEG or MEG data. Extending its utility beyond EEG and MEG analysis, ReDisCA is likely to find application in fMRI data analysis and exploration of representational structures emerging in multilayered artificial neural networks.
Collapse
Affiliation(s)
- Alexei Ossadtchi
- Higher School of Economics, Moscow, Russia; LIFT, Life Improvement by Future Technologies Institute, Moscow, Russia; Artificial Intelligence Research Institute, Moscow, Russia.
| | - Ilia Semenkov
- Higher School of Economics, Moscow, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Anna Zhuravleva
- Higher School of Economics, Moscow, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Vladimir Kozunov
- MEG Centre, Moscow State University of Psychology and Education, Russia
| | - Oleg Serikov
- AI Initiative, King Abdullah University of Science and Technology, Kingdom of Saudi Arabia
| | - Ekaterina Voloshina
- Higher School of Economics, Moscow, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| |
Collapse
|
2
|
Chis-Ciure R, Melloni L, Northoff G. A measure centrality index for systematic empirical comparison of consciousness theories. Neurosci Biobehav Rev 2024; 161:105670. [PMID: 38615851 DOI: 10.1016/j.neubiorev.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Consciousness science is marred by disparate constructs and methodologies, making it challenging to systematically compare theories. This foundational crisis casts doubts on the scientific character of the field itself. Addressing it, we propose a framework for systematically comparing consciousness theories by introducing a novel inter-theory classification interface, the Measure Centrality Index (MCI). Recognizing its gradient distribution, the MCI assesses the degree of importance a specific empirical measure has for a given consciousness theory. We apply the MCI to probe how the empirical measures of the Global Neuronal Workspace Theory (GNW), Integrated Information Theory (IIT), and Temporospatial Theory of Consciousness (TTC) would fare within the context of the other two. We demonstrate that direct comparison of IIT, GNW, and TTC is meaningful and valid for some measures like Lempel-Ziv Complexity (LZC), Autocorrelation Window (ACW), and possibly Mutual Information (MI). In contrast, it is problematic for others like the anatomical and physiological neural correlates of consciousness (NCC) due to their MCI-based differential weightings within the structure of the theories. In sum, we introduce and provide proof-of-principle of a novel systematic method for direct inter-theory empirical comparisons, thereby addressing isolated evolution of theories and confirmatory bias issues in the state-of-the-art neuroscience of consciousness.
Collapse
Affiliation(s)
- Robert Chis-Ciure
- New York University (NYU), New York, USA; International Center for Neuroscience and Ethics (CINET), Tatiana Foundation, Madrid, Spain; Wolfram Physics Project, USA.
| | - Lucia Melloni
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
3
|
Gao C, Uchitomi H, Miyake Y. Influence of Multimodal Emotional Stimulations on Brain Activity: An Electroencephalographic Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:4801. [PMID: 37430714 PMCID: PMC10221168 DOI: 10.3390/s23104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023]
Abstract
This study aimed to reveal the influence of emotional valence and sensory modality on neural activity in response to multimodal emotional stimuli using scalp EEG. In this study, 20 healthy participants completed the emotional multimodal stimulation experiment for three stimulus modalities (audio, visual, and audio-visual), all of which are from the same video source with two emotional components (pleasure or unpleasure), and EEG data were collected using six experimental conditions and one resting state. We analyzed power spectral density (PSD) and event-related potential (ERP) components in response to multimodal emotional stimuli, for spectral and temporal analysis. PSD results showed that the single modality (audio only/visual only) emotional stimulation PSD differed from multi-modality (audio-visual) in a wide brain and band range due to the changes in modality and not from the changes in emotional degree. The most pronounced N200-to-P300 potential shifts occurred in monomodal rather than multimodal emotional stimulations. This study suggests that emotional saliency and sensory processing efficiency perform a significant role in shaping neural activity during multimodal emotional stimulation, with the sensory modality being more influential in PSD. These findings contribute to our understanding of the neural mechanisms involved in multimodal emotional stimulation.
Collapse
Affiliation(s)
- Chenguang Gao
- Department of Computer Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan; (H.U.); (Y.M.)
| | | | | |
Collapse
|
4
|
Gandhi SR, Mayner WGP, Marshall W, Billeh YN, Bennett C, Gale SD, Mochizuki C, Siegle JH, Olsen S, Tononi G, Koch C, Arkhipov A. A survey of neurophysiological differentiation across mouse visual brain areas and timescales. Front Comput Neurosci 2023; 17:1040629. [PMID: 36994445 PMCID: PMC10040573 DOI: 10.3389/fncom.2023.1040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Neurophysiological differentiation (ND), a measure of the number of distinct activity states that a neural population visits over a time interval, has been used as a correlate of meaningfulness or subjective perception of visual stimuli. ND has largely been studied in non-invasive human whole-brain recordings where spatial resolution is limited. However, it is likely that perception is supported by discrete neuronal populations rather than the whole brain. Therefore, here we use Neuropixels recordings from the mouse brain to characterize the ND metric across a wide range of temporal scales, within neural populations recorded at single-cell resolution in localized regions. Using the spiking activity of thousands of simultaneously recorded neurons spanning 6 visual cortical areas and the visual thalamus, we show that the ND of stimulus-evoked activity of the entire visual cortex is higher for naturalistic stimuli relative to artificial ones. This finding holds in most individual areas throughout the visual hierarchy. Moreover, for animals performing an image change detection task, ND of the entire visual cortex (though not individual areas) is higher for successful detection compared to failed trials, consistent with the assumed perception of the stimulus. Together, these results suggest that ND computed on cellular-level neural recordings is a useful tool highlighting cell populations that may be involved in subjective perception.
Collapse
Affiliation(s)
- Saurabh R. Gandhi
- MindScope Program, Allen Institute, Seattle, WA, United States
- *Correspondence: Saurabh R. Gandhi,
| | - William G. P. Mayner
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI, United States
| | - William Marshall
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON, Canada
| | - Yazan N. Billeh
- MindScope Program, Allen Institute, Seattle, WA, United States
| | - Corbett Bennett
- MindScope Program, Allen Institute, Seattle, WA, United States
| | - Samuel D. Gale
- MindScope Program, Allen Institute, Seattle, WA, United States
| | - Chris Mochizuki
- MindScope Program, Allen Institute, Seattle, WA, United States
| | | | - Shawn Olsen
- MindScope Program, Allen Institute, Seattle, WA, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin–Madison, Madison, WI, United States
| | - Christof Koch
- MindScope Program, Allen Institute, Seattle, WA, United States
| | - Anton Arkhipov
- MindScope Program, Allen Institute, Seattle, WA, United States
- Anton Arkhipov,
| |
Collapse
|
5
|
Orłowski P, Bola M. Sensory modality defines the relation between EEG Lempel-Ziv diversity and meaningfulness of a stimulus. Sci Rep 2023; 13:3453. [PMID: 36859725 PMCID: PMC9977735 DOI: 10.1038/s41598-023-30639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Diversity of brain activity is a robust neural correlate of global states of consciousness. It has been proposed that diversity measures specifically reflect the temporal variability of conscious experience. Previous studies supported this hypothesis by showing that perception of meaningful visual stimuli causes richer, more-variable experiences than perception of meaningless stimuli, and this is reflected in greater brain signal diversity. To investigate whether this relation is consistent across sensory modalities, to participants we presented three versions of naturalistic visual and auditory stimuli (videos and audiobooks) that varied in the amount of meaning (original, scrambled, and noise), while recording electroencephalographic signals. We report three main findings. First, greater meaningfulness of visual stimuli was related to higher Lempel-Ziv diversity of EEG signals, but the opposite effect was found in the auditory modality. Second, visual perception was related to generally higher EEG diversity than auditory perception. Third, perception of meaningful visual stimuli and auditory stimuli respectively resulted in higher and lower EEG diversity in comparison to the resting state. In conclusion, the signal diversity of continuous brain signals depends on the stimulated sensory modality, therefore it is not a generic index of the variability of conscious experience.
Collapse
Affiliation(s)
- Paweł Orłowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Michał Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Arkhipov A. Non-Separability of Physical Systems as a Foundation of Consciousness. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1539. [PMID: 36359629 PMCID: PMC9689906 DOI: 10.3390/e24111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
A hypothesis is presented that non-separability of degrees of freedom is the fundamental property underlying consciousness in physical systems. The amount of consciousness in a system is determined by the extent of non-separability and the number of degrees of freedom involved. Non-interacting and feedforward systems have zero consciousness, whereas most systems of interacting particles appear to have low non-separability and consciousness. By contrast, brain circuits exhibit high complexity and weak but tightly coordinated interactions, which appear to support high non-separability and therefore high amount of consciousness. The hypothesis applies to both classical and quantum cases, and we highlight the formalism employing the Wigner function (which in the classical limit becomes the Liouville density function) as a potentially fruitful framework for characterizing non-separability and, thus, the amount of consciousness in a system. The hypothesis appears to be consistent with both the Integrated Information Theory and the Orchestrated Objective Reduction Theory and may help reconcile the two. It offers a natural explanation for the physical properties underlying the amount of consciousness and points to methods of estimating the amount of non-separability as promising ways of characterizing the amount of consciousness.
Collapse
Affiliation(s)
- Anton Arkhipov
- MindScope Program, Allen Institute, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Koculak M, Wierzchoń M. How much consciousness is there in complexity? Front Psychol 2022; 13:983315. [PMID: 36204731 PMCID: PMC9530911 DOI: 10.3389/fpsyg.2022.983315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The notion of complexity currently receives significant attention in neuroscience, mainly through the popularity of the Integrated Information Theory (IIT). It has proven successful in research centred on discriminating states of consciousness, while little theoretical and experimental effort was directed toward studying the content. In this paper, we argue that exploring the relationship between complexity and conscious content is necessary to understand the importance of information-theoretic measures for consciousness research properly. We outline how content could be experimentally operationalised and how rudimental testable hypotheses can be formulated without requiring IIT formalisms. This approach would not only allow for a better understanding of aspects of consciousness captured by complexity but could also facilitate comparison efforts for theories of consciousness.
Collapse
Affiliation(s)
- Marcin Koculak
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Kraków, Poland
- Centre for Brain Research, Jagiellonian University, Kraków, Poland
| | - Michał Wierzchoń
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Kraków, Poland
- Centre for Brain Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
8
|
Measuring Stimulus-Evoked Neurophysiological Differentiation in Distinct Populations of Neurons in Mouse Visual Cortex. eNeuro 2022; 9:ENEURO.0280-21.2021. [PMID: 35022186 PMCID: PMC8856714 DOI: 10.1523/eneuro.0280-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of large populations of neurons relates to what an observer actually perceives. Since neurophysiological differences must underlie differences among percepts, differentiation analysis—quantifying distinct patterns of neurophysiological activity—has been proposed as an “inside-out” approach that addresses this question. This methodology contrasts with “outside-in” approaches such as feature tuning and decoding analyses, which are defined in terms of extrinsic experimental variables. Here, we used two-photon calcium imaging in mice of both sexes to systematically survey stimulus-evoked neurophysiological differentiation (ND) in excitatory neuronal populations in layers (L)2/3, L4, and L5 across five visual cortical areas (primary, lateromedial, anterolateral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find that unscrambled stimuli evoke greater ND than scrambled stimuli specifically in L2/3 of the anterolateral and anteromedial areas, and that this effect is modulated by arousal state and locomotion. By contrast, decoding performance was far above chance and did not vary substantially across areas and layers. Differentiation also differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the ethological relevance of individual stimuli.
Collapse
|
9
|
Takeda A, Yamada E, Uehara T, Ogata K, Okamoto T, Tobimatsu S. Data-point-wise spatiotemporal mapping of human ventral visual areas: Use of spatial frequency/luminance-modulated chromatic faces. Neuroimage 2021; 239:118325. [PMID: 34216773 DOI: 10.1016/j.neuroimage.2021.118325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022] Open
Abstract
Visual information involving facial identity and expression is crucial for social communication. Although the influence of facial features such as spatial frequency (SF) and luminance on face processing in visual areas has been studied extensively using grayscale stimuli, the combined effects of other features in this process have not been characterized. To determine the combined effects of different SFs and color, we created chromatic stimuli with low, high or no SF components, which bring distinct SF and color information into the ventral stream simultaneously. To obtain neural activity data with high spatiotemporal resolution we recorded face-selective responses (M170) using magnetoencephalography. We used a permutation test procedure with threshold-free cluster enhancement to assess statistical significance while resolving problems related to multiple comparisons and arbitrariness found in traditional statistical methods. We found that time windows with statistically significant threshold levels were distributed differently among the stimulus conditions. Face stimuli containing any SF components evoked M170 in the fusiform gyrus (FG), whereas a significant emotional effect on M170 was only observed with the original images. Low SF faces elicited larger activation of the FG and the inferior occipital gyrus than the original images, suggesting an interaction between low and high SF information processing. Interestingly, chromatic face stimuli without SF first activated color-selective regions and then the FG, indicating that facial color was processed according to a hierarchy in the ventral stream. These findings suggest complex effects of SFs in the presence of color information, reflected in M170, and unveil the detailed spatiotemporal dynamics of face processing in the human brain.
Collapse
Affiliation(s)
- Akinori Takeda
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Research Center for Brain Communication, Research Institute, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami City, Kochi 782-8502, Japan.
| | - Emi Yamada
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Linguistics, Faculty of Humanities, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taira Uehara
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Neurology, IUHW Narita Hospital, 852 Hatakeda, Narita, Chiba 286-8520, Japan
| | - Katsuya Ogata
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokidu, Okawa, Fukuoka 831-8501, Japan
| | - Tsuyoshi Okamoto
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shozo Tobimatsu
- Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Orthoptics, Faculty of Medicine, Fukuoka International University of Health and Welfare, 3-6-40 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan
| |
Collapse
|
10
|
Event-related components are structurally represented by intrinsic event-related potentials. Sci Rep 2021; 11:5670. [PMID: 33707511 PMCID: PMC7970958 DOI: 10.1038/s41598-021-85235-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022] Open
Abstract
The detection of event-related potentials (ERPs) through electroencephalogram (EEG) analysis is a well-established method for understanding brain functions during a cognitive process. To increase the signal-to-noise ratio (SNR) and stationarity of the data, ERPs are often filtered to a wideband frequency range, such as 0.05–30 Hz. Alternatively, a natural-filtering procedure can be performed through empirical mode decomposition (EMD), which yields intrinsic mode functions (IMFs) for each trial of the EEG data, followed by averaging over trials to generate the event-related modes. However, although the EMD-based filtering procedure has advantages such as a high SNR, suitable waveform shape, and high statistical power, one fundamental drawback of the procedure is that it requires the selection of an IMF (or a partial sum of a range of IMFs) to determine an ERP component effectively. Therefore, in this study, we propose an intrinsic ERP (iERP) method to overcome the drawbacks and retain the advantages of event-related mode analysis for investigating ERP components. The iERP method can reveal multiple ERP components at their characteristic time scales and suitably cluster statistical effects among modes by using a tailored definition of each mode’s neighbors. We validated the iERP method by using realistic EEG data sets acquired from a face perception task and visual working memory task. By using these two data sets, we demonstrated how to apply the iERP method to a cognitive task and incorporate existing cluster-based tests into iERP analysis. Moreover, iERP analysis revealed the statistical effects between (or among) experimental conditions more effectively than the conventional ERP method did.
Collapse
|
11
|
Bola M, Orłowski P, Baranowska K, Schartner M, Marchewka A. Informativeness of Auditory Stimuli Does Not Affect EEG Signal Diversity. Front Psychol 2018; 9:1820. [PMID: 30319513 PMCID: PMC6168660 DOI: 10.3389/fpsyg.2018.01820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Brain signal diversity constitutes a robust neuronal marker of the global states of consciousness. It has been demonstrated that, in comparison to the resting wakefulness, signal diversity is lower during unconscious states, and higher during psychedelic states. A plausible interpretation of these findings is that the neuronal diversity corresponds to the diversity of subjective conscious experiences. Therefore, in the present study we varied an information rate processed by the subjects and hypothesized that greater information rate will be related to richer and more differentiated phenomenology and, consequently, to greater signal diversity. To test this hypothesis speech recordings (excerpts from an audio-book) were presented to subjects at five different speeds (65, 83, 100, 117, and 135% of the original speed). By increasing or decreasing speed of the recordings we were able to, respectively, increase or decrease the presented information rate. We also included a backward (unintelligible) speech presentation and a resting-state condition (no auditory stimulation). We tested 19 healthy subjects and analyzed the recorded EEG signal (64 channels) in terms of Lempel-Ziv diversity (LZs). We report the following findings. First, our main hypothesis was not confirmed, as Bayes Factor indicates evidence for no effect when comparing LZs among five presentation speeds. Second, we found that LZs during the resting-state was greater than during processing of both meaningful and unintelligible speech. Third, an additional analysis uncovered a gradual decrease of diversity over the time-course of the experiment, which might reflect a decrease in vigilance. We thus speculate that higher signal diversity during the unconstrained resting-state might be due to a greater variety of experiences, involving spontaneous attention switching and mind wandering.
Collapse
Affiliation(s)
- Michał Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Orłowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Institute of Philosophy, University of Warsaw, Warsaw, Poland.,Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Karolina Baranowska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | - Michael Schartner
- Département des Neurosciences Fondamentales, Université de Genève, Geneva, Switzerland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Mensen A, Marshall W, Sasai S, Tononi G. Differentiation Analysis of Continuous Electroencephalographic Activity Triggered by Video Clip Contents. J Cogn Neurosci 2018; 30:1108-1118. [PMID: 29762103 DOI: 10.1162/jocn_a_01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
While viewing a video clip, we experience a wide variety of contents, from low-level features of the images to high-level ideas such as the storyline. Each change in our experience must be supported by some corresponding change in neurophysiological activity. Differentiation analysis, which quantifies the differences in brain activity by measuring the distances between observed brain states, was applied here to continuous high-density electroencephalographic data recorded while participants watched short video clips. These clips were manipulated in various ways to change the degree of meaningfulness of their contents. We found that neurophysiological differentiation mirrored that of phenomenal differentiation, being higher for meaningful clips and lower for phase-scrambled versions or random noise. The distinction between meaningful and meaningless clips was present even at the individual level, and moreover, differentiation values correlated with individual subjective reports of meaningfulness. Spatial and spectral breakdowns of the overall effect showed frontal and posterior ROIs and highlighted specific roles for different spectral bands. Comparing the results with a multivariate decoding approach reveals that the two methods are capturing different aspects of brain activity and highlights a crucial theoretical distinction between the level and pattern of activity. In future applications, differentiation analysis may be used to evaluate the subjective meaningfulness of stimuli when behavioral responses may be inadequate, as with disorders of consciousness.
Collapse
Affiliation(s)
- Armand Mensen
- University of Liège.,University of Wisconsin at Madison
| | | | | | | |
Collapse
|