1
|
Wu ZM, Wang P, Zhong YY, Liu Y, Liu XC, Wang JJ, Cao XL, Liu L, Sun L, Yang L, Zang YF, Qian Y, Cao QJ, Wang YF, Yang BR. The underlying neuropsychological and neural correlates of the impaired Chinese reading skills in children with attention deficit hyperactivity disorder. Eur Child Adolesc Psychiatry 2024; 33:3979-3992. [PMID: 38662058 PMCID: PMC11588871 DOI: 10.1007/s00787-024-02422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Impaired basic academic skills (e.g., word recognition) are common in children with Attention Deficit Hyperactivity Disorder (ADHD). The underlying neuropsychological and neural correlates of impaired Chinese reading skills in children with ADHD have not been substantially explored. Three hundred and two children with ADHD (all medication-naïve) and 105 healthy controls underwent the Chinese language skill assessment, and 175 also underwent fMRI scans (84 ADHD and 91 controls). Between-group and mediation analyses were applied to explore the interrelationships of the diagnosis of ADHD, cognitive dysfunction, and impaired reading skills. Five ADHD-related brain functional networks, including the default mode network (DMN) and the dorsal attention network (DAN), were built using predefined regions of interest. Voxel-based group-wise comparisons were performed. The ADHD group performed worse than the control group in word-level reading ability tests, with lower scores in Chinese character recognition (CR) and word chains (WS) (all P < 0.05). With full-scale IQ and sustained attention in the mediation model, the direct effect of ADHD status on the CR score became insignificant (P = 0.066). The underlying neural correlates for the orthographic knowledge (OT) and CR differed between the ADHD and the control group. The ADHD group tended to recruit more DMN regions to maintain their reading performance, while the control group seemed to utilize more DAN regions. Children with ADHD generally presented impaired word-level reading skills, which might be caused by impaired sustained attention and lower IQ. According to the brain functional results, we infer that ADHD children might utilize a different strategy to maintain their orthographic knowledge and character recognition performance.
Collapse
Affiliation(s)
- Zhao-Min Wu
- Shenzhen Childrens Hospital, Shenzhen, China.
- Shenzhen Pediatrics Institute of Shantou University Medical College, Shenzhen, China.
| | | | | | - Yun Liu
- Shenzhen Childrens Hospital, Shenzhen, China
| | | | - Jiu-Ju Wang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | | | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Yang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yu-Feng Zang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Qian
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Qing-Jiu Cao
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yu-Feng Wang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | | |
Collapse
|
2
|
Wei Y, Wang J, Wang H, Paz-Alonso PM. Functional interactions underlying visuospatial orthographic processes in Chinese reading. Cereb Cortex 2024; 34:bhae359. [PMID: 39294003 DOI: 10.1093/cercor/bhae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
As a logographic writing system, Chinese reading involves the processing of visuospatial orthographic (ORT) properties. However, this aspect has received relatively less attention in neuroimaging research, which has tended to emphasize phonological (PHO) and semantic (SEM) aspects in processing Chinese characters. Here, we compared the functional correlates supporting all these three processes in a functional MRI single-character reading study, in which 35 native Chinese adults were asked to make ORT, PHO, and SEM judgments in separate task-specific activation blocks. Our findings revealed increased involvement of the right hemisphere in processing Chinese visuospatial orthography, particularly evident in the right ventral occipito-temporal cortex (vOTC). Additionally, time course analysis revealed that the left superior parietal gyrus (SPG) was initially involved in SEM processing but contributed to the visuospatial processing of words in a later time window. Finally, ORT processing demonstrated stronger recruitment of left vOTC-SPG-middle frontal gyrus (MFG) functional connectivity compared to SEM processing. This functional coupling correlated with reduced regional engagement of the left vOTC and MFG, highlighting that visuospatial ORT processes in reading Chinese rely on functional interactions among key regions rather than local regional processes. In conclusion, these findings underscore visuospatial ORT processes as a distinctive feature of reading logographic characters.
Collapse
Affiliation(s)
- Yanjun Wei
- Key Laboratory of the Cognitive Science of Language, Beijing Language and Culture University, Ministry of Education, Xueyuan Road 15, Beijing 10083, China
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Xueyuan Road 15, Beijing 10083, China
| | - Jianqin Wang
- Key Laboratory of the Cognitive Science of Language, Beijing Language and Culture University, Ministry of Education, Xueyuan Road 15, Beijing 10083, China
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Xueyuan Road 15, Beijing 10083, China
| | - Huiping Wang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Xueyuan Road 15, Beijing 10083, China
| | - Pedro M Paz-Alonso
- BCBL, Basque Center on Cognition, Brain and Language, Mikeletegi Pasalekua 69, Donostia 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbo 48013, Spain
| |
Collapse
|
3
|
Wang A, Yan X, Feng G, Cao F. Shared and task-specific brain functional differences across multiple tasks in children with developmental dyslexia. Neuropsychologia 2024; 201:108935. [PMID: 38848989 DOI: 10.1016/j.neuropsychologia.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Different tasks have been used in examining the neural functional differences associated with developmental dyslexia (DD), and consequently, different findings have been reported. However, very few studies have systematically compared multiple tasks in understanding what specific task differences each brain region is associated with. In this study, we employed an auditory rhyming task, a visual rhyming task, and a visual spelling task, in order to investigate shared and task-specific neural differences in Chinese children with DD. First, we found that children with DD had reduced activation in the opercular part of the left inferior frontal gyrus (IFG) only in the two rhyming tasks, suggesting impaired phonological analysis. Children with DD showed functional differences in the right lingual gyrus/inferior occipital gyrus only in the two visual tasks, suggesting deficiency in their visuo-orthographic processing. Moreover, children with DD showed reduced activation in the left dorsal inferior frontal gyrus and increased activation in the right precentral gyrus across all of the three tasks, suggesting neural signatures of DD in Chinese. In summary, our study successfully separated brain regions associated with differences in orthographic processing, phonological processing, and general lexical processing in DD. It advances our understanding about the neural mechanisms of DD.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Psychology, Sun Yat-Sen University, China
| | - Xiaohui Yan
- Department of Psychology, the University of Hong Kong, China; State Key Lab of Brain and Cognitive Sciences, the University of Hong Kong, China
| | - Guoyan Feng
- Department of Psychology, Sun Yat-Sen University, China; School of Management, Guangzhou Xinhua University, China
| | - Fan Cao
- Department of Psychology, the University of Hong Kong, China; State Key Lab of Brain and Cognitive Sciences, the University of Hong Kong, China.
| |
Collapse
|
4
|
N P GS, Singh BK. Analysis of reading-task-based brain connectivity in dyslexic children using EEG signals. Med Biol Eng Comput 2024; 62:2355-2369. [PMID: 38584207 DOI: 10.1007/s11517-024-03085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Developmental dyslexia, a neurodevelopment reading disorder, can impact even children with average intelligence. The present study examined the brain connectivity in dyslexic and control children during the reading task using graph theory. 19-channel electroencephalogram (EEG) signals were recorded from 15 dyslexic children and 15 control children. Functional connectivity was estimated by measuring the EEG coherence at 19 electrode locations, and graph measures were calculated using the graph theory method. Reading task results identified deprived task performance in dyslexic children against controls. Graph measures revealed longer path length, reduced clustering coefficient and reduced network efficiencies (in theta and alpha bands) of dyslexic group. At the nodal level, we found a significant increase in delta strength (T4 and T5 electrode locations) and reduced strength in theta (T6, P4, Fp1, F8 and F3) and alpha bands (T4, T3, P4 and F3) during the reading task in dyslexic group. In conclusion, the present study identified distinct graph measures between groups when performing a reading task and showed possible evidence for compromised brain networks in dyslexic group.
Collapse
Affiliation(s)
- Guhan Seshadri N P
- Department of Biomedical Engineering, National Institute of Technology Raipur, G.E Road, Raipur, 492010, India
| | - Bikesh Kumar Singh
- Department of Biomedical Engineering, National Institute of Technology Raipur, G.E Road, Raipur, 492010, India.
| |
Collapse
|
5
|
Zhang K, Sun X, Yu C, Eggleston RL, Marks RA, Nickerson N, Caruso VC, Hu X, Tardif T, Chou T, Booth JR, Kovelman I. Phonological and morphological literacy skills in English and Chinese: A cross-linguistic neuroimaging comparison of Chinese-English bilingual and monolingual English children. Hum Brain Mapp 2023; 44:4812-4829. [PMID: 37483170 PMCID: PMC10400794 DOI: 10.1002/hbm.26419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Over the course of literacy development, children learn to recognize word sounds and meanings in print. Yet, they do so differently across alphabetic and character-based orthographies such as English and Chinese. To uncover cross-linguistic influences on children's literacy, we asked young Chinese-English simultaneous bilinguals and English monolinguals (N = 119, ages 5-10) to complete phonological and morphological awareness (MA) literacy tasks. Children completed the tasks in the auditory modality in each of their languages during functional near-infrared spectroscopy neuroimaging. Cross-linguistically, comparisons between bilinguals' two languages revealed that the task that was more central to reading in a given orthography, such as phonological awareness (PA) in English and MA in Chinese, elicited less activation in the left inferior frontal and parietal regions. Group comparisons between bilinguals and monolinguals in English, their shared language of academic instruction, revealed that the left inferior frontal was less active during phonology but more active during morphology in bilinguals relative to monolinguals. MA skills are generally considered to have greater language specificity than PA skills. Bilingual literacy training in a skill that is maximally similar across languages, such as PA, may therefore yield greater automaticity for this skill, as reflected in the lower activation in bilinguals relative to monolinguals. This interpretation is supported by negative correlations between proficiency and brain activation. Together, these findings suggest that both the structural characteristics and literacy experiences with a given language can exert specific influences on bilingual and monolingual children's emerging brain networks for learning to read.
Collapse
Affiliation(s)
- Kehui Zhang
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Xin Sun
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Chi‐Lin Yu
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Rebecca A. Marks
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nia Nickerson
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Xiao‐Su Hu
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Twila Tardif
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tai‐Li Chou
- Department of PsychologyNational Taiwan UniversityTaipeiTaiwan
| | - James R. Booth
- Department of Psychology and Human DevelopmentVanderbilt UniversityNashvilleTennesseeUSA
| | - Ioulia Kovelman
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Li Y, Bi HY. Comparative research on neural dysfunction in children with dyslexia under different writing systems: A meta-analysis study. Neurosci Biobehav Rev 2022; 137:104650. [PMID: 35367220 DOI: 10.1016/j.neubiorev.2022.104650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
Developmental dyslexia is a special learning disorder which is prevalent in all languages. A central question in dyslexia is whether the neural mechanism of their defects is universal or distinct in different writing systems. Using meta-analytic approach, we created meta-images using activation abnormalities in Chinese and alphabetic children with dyslexia to find convergence and divergence under different writing systems. The results revealed that dyslexic children have a universal attention-related dysfunction with hypoactivation in the left inferior frontal cortex (IFC) and the anterior cingulate cortex (ACC) under different writing systems, in spite of differences of degree and spatial extent in those regions. Alphabetic dyslexic children additionally showed hypoactivation in the left occipito-temporo-parietal regions. Chinese dyslexic children showed specific hyperactivation in the right postcentral gyrus, the left rectus, and the right middle temporal gyrus. The present meta-analysis for the first time showed both shared and distinct abnormalities in children with dyslexia under Chinese and alphabetic writing systems.
Collapse
Affiliation(s)
- YiZhen Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Li A, Yang R, Qu J, Dong J, Gu L, Mei L. Neural representation of phonological information during Chinese character reading. Hum Brain Mapp 2022; 43:4013-4029. [PMID: 35545935 PMCID: PMC9374885 DOI: 10.1002/hbm.25900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Previous studies have revealed that phonological processing of Chinese characters elicited activation in the left prefrontal cortex, bilateral parietal cortex, and occipitotemporal regions. However, it is controversial what role the left middle frontal gyrus plays in Chinese character reading, and whether the core regions (e.g., the left superior temporal gyrus and supramarginal gyrus) for phonological processing of alphabetic languages are also involved in Chinese character reading. To address these questions, the present study used both univariate and multivariate analysis (i.e., representational similarity analysis, RSA) to explore neural representations of phonological information during Chinese character reading. Participants were scanned while performing a reading aloud task. Univariate activation analysis revealed a widely distributed network for word reading, including the bilateral inferior frontal gyrus, middle frontal gyrus, lateral temporal cortex, and occipitotemporal cortex. More importantly, RSA showed that the left prefrontal (i.e., the left middle frontal gyrus and left inferior frontal gyrus) and bilateral occipitotemporal areas (i.e., the left inferior and middle temporal gyrus and bilateral fusiform gyrus) represented phonological information of Chinese characters. These results confirmed the importance of the left middle frontal gyrus and regions in ventral pathway in representing phonological information of Chinese characters.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Dong
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Lala Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou, China
| |
Collapse
|
8
|
Zhang M, Riecke L, Fraga-González G, Bonte M. Altered brain network topology during speech tracking in developmental dyslexia. Neuroimage 2022; 254:119142. [PMID: 35342007 DOI: 10.1016/j.neuroimage.2022.119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022] Open
Abstract
Developmental dyslexia is often accompanied by altered phonological processing of speech. Underlying neural changes have typically been characterized in terms of stimulus- and/or task-related responses within individual brain regions or their functional connectivity. Less is known about potential changes in the more global functional organization of brain networks. Here we recorded electroencephalography (EEG) in typical and dyslexic readers while they listened to (a) a random sequence of syllables and (b) a series of tri-syllabic real words. The network topology of the phase synchronization of evoked cortical oscillations was investigated in four frequency bands (delta, theta, alpha and beta) using minimum spanning tree graphs. We found that, compared to syllable tracking, word tracking triggered a shift toward a more integrated network topology in the theta band in both groups. Importantly, this change was significantly stronger in the dyslexic readers, who also showed increased reliance on a right frontal cluster of electrodes for word tracking. The current findings point towards an altered effect of word-level processing on the functional brain network organization that may be associated with less efficient phonological and reading skills in dyslexia.
Collapse
Affiliation(s)
- Manli Zhang
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Lars Riecke
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Gorka Fraga-González
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University of Zurich, Switzerland
| | - Milene Bonte
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Deng X, Wang B, Zong F, Yin H, Yu S, Zhang D, Wang S, Cao Y, Zhao J, Zhang Y. Right-hemispheric language reorganization in patients with brain arteriovenous malformations: A functional magnetic resonance imaging study. Hum Brain Mapp 2021; 42:6014-6027. [PMID: 34582074 PMCID: PMC8596961 DOI: 10.1002/hbm.25666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 11/09/2022] Open
Abstract
Brain arteriovenous malformation (AVM), a presumed congenital lesion, may involve traditional language areas but usually does not lead to language dysfunction unless it ruptures. The objective of this research was to study right-hemispheric language reorganization patterns in patients with brain AVMs using functional magnetic resonance imaging (fMRI). We prospectively enrolled 30 AVM patients with lesions involving language areas and 32 age- and sex-matched healthy controls. Each subject underwent fMRI during three language tasks: visual synonym judgment, oral word reading, and auditory sentence comprehension. The activation differences between the AVM and control groups were investigated by voxelwise analysis. Lateralization indices (LIs) for the frontal lobe, temporal lobe, and cerebellum were compared between the two groups, respectively. Results suggested that the language functions of AVM patients and controls were all normal. Voxelwise analysis showed no significantly different activations between the two groups in visual synonym judgment and oral word reading tasks. In auditory sentence comprehension task, AVM patients had significantly more activations in the right precentral gyrus (BA 6) and right cerebellar lobule VI (AAL 9042). According to the LI results, the frontal lobe in oral word reading task and the temporal lobe in auditory sentence comprehension task were significantly more right-lateralized in the AVM group. These findings suggest that for patients with AVMs involving language cortex, different language reorganization patterns may develop for different language functions. The recruitment of brain areas in the right cerebral and cerebellar hemispheres may play a compensatory role in the reorganized language network of AVM patients.
Collapse
Affiliation(s)
- Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bo Wang
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China.,State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fangrong Zong
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hu Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaochen Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
10
|
Yan X, Jiang K, Li H, Wang Z, Perkins K, Cao F. Convergent and divergent brain structural and functional abnormalities associated with developmental dyslexia. eLife 2021; 10:e69523. [PMID: 34569931 PMCID: PMC8497057 DOI: 10.7554/elife.69523] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Ke Jiang
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| | - Hui Li
- Department of Preschool Education, Anyang Preschool Education CollegeAnyangChina
| | - Ziyi Wang
- School of Foreign Language, Jining UniversityJiningChina
| | - Kyle Perkins
- Florida International University (Retired Professor)MiamiUnited States
| | - Fan Cao
- Department of Psychology, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Mao J, Liu L, Perkins K, Cao F. Poor reading is characterized by a more connected network with wrong hubs. BRAIN AND LANGUAGE 2021; 220:104983. [PMID: 34174464 DOI: 10.1016/j.bandl.2021.104983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Using graph theory, we examined topological organization of the language network in Chinese children with poor reading during an auditory rhyming task and a visual spelling task, compared to reading-matched controls and age-matched controls. First, poor readers (PR) showed reduced clustering coefficient in the left inferior frontal gyrus (IFG) and higher nodal efficiency in the bilateral superior temporal gyri (STG) during the visual task, indicating a less functionally specialized cluster around the left IFG and stronger functional links between bilateral STGs and other regions. Furthermore, PR adopted additional right-hemispheric hubs in both tasks, which may explain increased global efficiency across both tasks and lower normalized characteristic shortest path length in the visual task for the PR. These results underscore deficits in the left IFG during visual word processing and conform previous findings about compensation in the right hemisphere in children with poor reading.
Collapse
Affiliation(s)
- Jiaqi Mao
- Department of Psychology, Sun Yat-Sen University, China
| | - Lanfang Liu
- Department of Psychology, Sun Yat-Sen University, China
| | - Kyle Perkins
- Department of Teaching and Learning, College of Arts, Sciences and Education, Florida International University, United States
| | - Fan Cao
- Department of Psychology, Sun Yat-Sen University, China.
| |
Collapse
|
12
|
Mantovani S, Magro RR, Ribeiro RDCHM, Marini AM, Martins MRI. Occurrence of reading and writing cognitive processes and perception visual skills in students with Visual Dyslexia. Codas 2021; 33:e20200209. [PMID: 34190812 DOI: 10.1590/2317-1782/20202020209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022] Open
Abstract
PURPOSE to evaluate and classify visual dyslexic students, considering that developmental dyslexia subtypes are not differentiated in most diagnoses and that they affect a generalized approach. METHODS Cross-sectional, observational, analytical study composed of 80 students, divided into two groups, GA (dyslexics) and GB (without complaints of learning difficulties) using PROLEC (proof of assessment of reading processes), TVPS - 3 (Visual Test of Perceptual Skills) and TPMBO (Bruininks-Oseretsky Motor Proficiency Test) - subtests 7 and 8. RESULTS Comparing the groups, the students of GA presented inferior performance in all the PROLEC tests and in the TVPS3 tests. The TPMBO tests of visuomotor coordination and manual dexterity tests were inferior. In a second stage, screening the visual dyslexics, 12 (30%) schoolchildren were found, who presented better performance in reading frequent words, when compared to the performance in reading infrequent words and pseudowords. In the visual perceptual skills (TVPS-3), they obtained values below 50%, except for the subscale constancy of form. The occurrences of exchanges in reading aloud were in confusion of letters, syllables or words with little difference in the way of writing, but different in the direction, the same students did not present exchanges or confusions between letters, which have the same point and manner of articulation, and whose sounds are acoustically close. CONCLUSION Thus, characterizing the dyslexia subtype is fundamental, because the application of therapeutic techniques will depend on the correct focus of the observed changes. Therefore, an accurate and multidisciplinary diagnosis is required.
Collapse
Affiliation(s)
- Silvana Mantovani
- Programa de Pós-graduação em Enfermagem, Faculdade de Medicina de São José do Rio Preto - FAMERP - São José do Rio Preto (SP), Brasil
| | - Rafael Ribeiro Magro
- Programa de Pós-graduação em Enfermagem, Faculdade de Medicina de São José do Rio Preto - FAMERP - São José do Rio Preto (SP), Brasil
| | | | - Adriana Maira Marini
- Serviço de Terapia Ocupacional, Hospital de Base, Faculdade de Medicina de São José do Rio Preto - FAMERP - São José do Rio Preto (SP), Brasil
| | - Marielza Regina Ismael Martins
- Departamento de Ciências Neurológicas, Faculdade de Medicina de São José do Rio Preto - FAMERP - São José do Rio Preto (SP), Brasil
| |
Collapse
|
13
|
Zhang J, Liu L, Li H, Feng X, Zhang M, Liu L, Meng X, Ding G. Large-scale network topology reveals brain functional abnormality in Chinese dyslexic children. Neuropsychologia 2021; 157:107886. [PMID: 33971213 DOI: 10.1016/j.neuropsychologia.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
It has been revealed that dyslexic children learning alphabetic languages are characterized by aberrant topological organization of brain networks. However, little is known about the functional organization and the reconfiguration pattern of brain networks in Chinese dyslexic children. Using graph theoretical analysis and functional magnetic resonance images (fMRI), we examined this issue specifically from the perspective of functional integration and segregation. We first compared large-scale topological organizations between dyslexic children and typically developing children during a Chinese phonological rhyming task, and found that dyslexic children showed increased local efficiency and clustering coefficient compared with typically developing children, which were negatively correlated with task performance. Furthermore, dyslexic children and typically developing children could be accurately distinguished at the individual-subject level based on the nodal local efficiency or clustering coefficient. Second, we studied the group difference of network reconfiguration and found that dyslexic children showed more difficulty when shifting from the resting state to the phonological task. Our results suggest an over-segregated brain functional organization and deficits in brain network reconfiguration in Chinese dyslexic children, which helps to advance our knowledge on the neural mechanisms underlying dyslexia.
Collapse
Affiliation(s)
- Jia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Lanfang Liu
- Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hehui Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Xiaoxia Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Manli Zhang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, PR China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, PR China; PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing, 100871, PR China.
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
14
|
Zhang L, Hu J, Liu X, Nichols ES, Lu C, Liu L. Disrupted Subcortical-Cortical Connections in a Phonological but Not Semantic Task in Chinese Children With Dyslexia. Front Hum Neurosci 2021; 14:611008. [PMID: 33536890 PMCID: PMC7848143 DOI: 10.3389/fnhum.2020.611008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022] Open
Abstract
Reading disability has been considered as a disconnection syndrome. Recently, an increasing number of studies have emphasized the role of subcortical regions in reading. However, the majority of research on reading disability has focused on the connections amongst brain regions within the classic cortical reading network. Here, we used graph theoretical analysis to investigate whether subcortical regions serve as hubs (regions highly connected with other brain regions) during reading both in Chinese children with reading disability (N = 15, age ranging from 11.03 to 13.08 years) and in age-matched typically developing children (N = 16, age ranging from 11.17 to 12.75 years) using a visual rhyming judgment task and a visual meaning judgment task. We found that the bilateral thalami were the unique hubs for typically developing children across both tasks. Additionally, subcortical regions (right putamen, left pallidum) were also unique hubs for typically developing children but only in the rhyming task. Among these subcortical hub regions, the left pallidum showed reduced connectivity with inferior frontal regions in the rhyming judgment but not semantic task in reading disabled compared with typically developing children. These results suggest that subcortical-cortical disconnection, which may be particularly relevant to the phonological and phonology-related learning process, may be associated with Chinese reading disability.
Collapse
Affiliation(s)
- Lihuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiali Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Emily S Nichols
- Faculty of Education, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|