1
|
Ataç A, Pehlivan E, Karaahmetoğlu FS, Özcan ZB, Çınarka H, Çörtük M, Baydili KN, Çetinkaya E. The Impact of Different Telerehabilitation Methods on Peripheral Muscle Strength and Aerobic Capacity in COPD Patients: A Randomized Controlled Trial. Adv Respir Med 2024; 92:370-383. [PMID: 39311114 PMCID: PMC11417740 DOI: 10.3390/arm92050035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Lung diseases have profound effects on the aging population. We aimed to hypothesize and investigate the effect of remote pulmonary telerehabilitation and motor imagery (MI) and action observation (AO) methods on the clinical status of elderly chronic obstructive pulmonary disease (COPD) patients. Twenty-six patients were randomly assigned to pulmonary telerehabilitation (PtR) or cognitive telerehabilitation (CtR) groups. The programs were carried out 3 days a week for 8 weeks. The 6-min walk test (6MWT), modified Medical Research Council dyspnea score, blood lactate level (BLL), measurement of peripheral muscle strength (PMS), and electromyography activation levels of accessory respiratory muscles were the main outcomes. There was a statistically significant improvement (p < 0.05) in both groups in the 6MWT distance and in secondary results, except for BLL. Generally, in the mean muscle activity obtained from the electromyography measurement after the program, there were statistically significant increases in the PtR group and decreases in the CtR group (p < 0.05). There was a statistically significant increase in PMS in both groups. An active muscle-strengthening program has the same benefits as applying the muscle-strengthening program to the patient as MI and AO. CtR can be a powerful alternative rehabilitation method in respiratory patients who cannot tolerate active exercise programs.
Collapse
Affiliation(s)
- Amine Ataç
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Gedik University, Istanbul 34876, Turkey;
| | - Esra Pehlivan
- Department of Physiotherapy and Rehabilitation, Faculty of Hamidiye Health Sciences, University of Health Sciences, Istanbul 346668, Turkey
| | - Fulya Senem Karaahmetoğlu
- Department of Physiotherapy and Rehabilitation, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul 346668, Turkey; (F.S.K.); (Z.B.Ö.)
| | - Zeynep Betül Özcan
- Department of Physiotherapy and Rehabilitation, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul 346668, Turkey; (F.S.K.); (Z.B.Ö.)
| | - Halit Çınarka
- Department of Chest Disease, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, University of Health Sciences, Istanbul 346668, Turkey; (H.Ç.); (M.Ç.); (E.Ç.)
| | - Mustafa Çörtük
- Department of Chest Disease, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, University of Health Sciences, Istanbul 346668, Turkey; (H.Ç.); (M.Ç.); (E.Ç.)
| | - Kürsad Nuri Baydili
- Health Institutions Management Program, Hamidiye Vocational School of Health Services, University of Health Sciences, Istanbul 346668, Turkey;
| | - Erdoğan Çetinkaya
- Department of Chest Disease, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, University of Health Sciences, Istanbul 346668, Turkey; (H.Ç.); (M.Ç.); (E.Ç.)
| |
Collapse
|
2
|
Cajigas I, Davis KC, Prins NW, Gallo S, Naeem JA, Fisher L, Ivan ME, Prasad A, Jagid JR. Brain-Computer interface control of stepping from invasive electrocorticography upper-limb motor imagery in a patient with quadriplegia. Front Hum Neurosci 2023; 16:1077416. [PMID: 36776220 PMCID: PMC9912159 DOI: 10.3389/fnhum.2022.1077416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Most spinal cord injuries (SCI) result in lower extremities paralysis, thus diminishing ambulation. Using brain-computer interfaces (BCI), patients may regain leg control using neural signals that actuate assistive devices. Here, we present a case of a subject with cervical SCI with an implanted electrocorticography (ECoG) device and determined whether the system is capable of motor-imagery-initiated walking in an assistive ambulator. Methods: A 24-year-old male subject with cervical SCI (C5 ASIA A) was implanted before the study with an ECoG sensing device over the sensorimotor hand region of the brain. The subject used motor-imagery (MI) to train decoders to classify sensorimotor rhythms. Fifteen sessions of closed-loop trials followed in which the subject ambulated for one hour on a robotic-assisted weight-supported treadmill one to three times per week. We evaluated the stability of the best-performing decoder over time to initiate walking on the treadmill by decoding upper-limb (UL) MI. Results: An online bagged trees classifier performed best with an accuracy of 84.15% averaged across 9 weeks. Decoder accuracy remained stable following throughout closed-loop data collection. Discussion: These results demonstrate that decoding UL MI is a feasible control signal for use in lower-limb motor control. Invasive BCI systems designed for upper-extremity motor control can be extended for controlling systems beyond upper extremity control alone. Importantly, the decoders used were able to use the invasive signal over several weeks to accurately classify MI from the invasive signal. More work is needed to determine the long-term consequence between UL MI and the resulting lower-limb control.
Collapse
Affiliation(s)
- Iahn Cajigas
- Department of Neurological Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin C. Davis
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Noeline W. Prins
- Department of Electrical and Information Engineering, University of Ruhana, Hapugala, Sri Lanka
| | - Sebastian Gallo
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Jasim A. Naeem
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Letitia Fisher
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Michael E. Ivan
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| | - Jonathan R. Jagid
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Mencel J, Marusiak J, Jaskólska A, Kamiński Ł, Kurzyński M, Wołczowski A, Jaskólski A, Kisiel-Sajewicz K. Motor imagery training of goal-directed reaching in relation to imagery of reaching and grasping in healthy people. Sci Rep 2022; 12:18610. [PMID: 36329083 PMCID: PMC9633838 DOI: 10.1038/s41598-022-21890-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The study aimed to determine whether four weeks of motor imagery training (MIT) of goal-directed reaching (reaching to grasp task) would affect the cortical activity during motor imagery of reaching (MIR) and grasping (MIG) in the same way. We examined cortical activity regarding event-related potentials (ERPs) in healthy young participants. Our study also evaluated the subjective vividness of the imagery. Furthermore, we aimed to determine the relationship between the subjective assessment of motor imagery (MI) ability to reach and grasp and the cortical activity during those tasks before and after training to understand the underlying neuroplasticity mechanisms. Twenty-seven volunteers participated in MIT of goal-directed reaching and two measurement sessions before and after MIT. During the sessions 128-channel electroencephalography (EEG) was recorded during MIR and MIG. Also, participants assessed the vividness of the MI tasks using a visual analog scale (VAS). The vividness of imagination improved significantly (P < .05) after MIT. A repeated measures ANOVA showed that the task (MIR/MIG) and the location of electrodes had a significant effect on the ERP's amplitude (P < .05). The interaction between the task, location, and session (before/after MIT) also had a significant effect on the ERP's amplitude (P < .05). Finally, the location of electrodes and the interaction between location and session had a significant effect on the ERP's latency (P < .05). We found that MIT influenced the EEG signal associated with reaching differently than grasping. The effect was more pronounced for MIR than for MIG. Correlation analysis showed that changes in the assessed parameters due to MIT reduced the relationship between the subjective evaluation of imagining and the EEG signal. This finding means that the subjective evaluation of imagining cannot be a simple, functional insight into the bioelectrical activity of the cerebral cortex expressed by the ERPs in mental training. The changes we noted in ERPs after MIT may benefit the use of non-invasive EEG in the brain-computer interface (BCI) context.Trial registration: NCT04048083.
Collapse
Affiliation(s)
- Joanna Mencel
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Jarosław Marusiak
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Anna Jaskólska
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Łukasz Kamiński
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Marek Kurzyński
- grid.7005.20000 0000 9805 3178Department of Field Theory, Electronic Circuits and Optoelectronics, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Andrzej Wołczowski
- grid.7005.20000 0000 9805 3178Department of Field Theory, Electronic Circuits and Optoelectronics, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Artur Jaskólski
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Katarzyna Kisiel-Sajewicz
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| |
Collapse
|
4
|
Analysis of Upper Limbs Target-Reaching Movement and Muscle Co-Activation in Patients with First Time Stroke for Rehabilitation Progress Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, the authors analysed changes occurring during the rehabilitation processes in patients after early stroke based on analysis of their upper limbs’ target-reaching movement and muscle co-activation. Ischemic stroke often results in reduced mobility of the upper extremities and frequently is a cause for long-term disability. The ever-developing technology of 3D movement analysis and miniaturisation of equipment for testing the bioelectrical activity of muscles can help to assess the progress of rehabilitation. The aim of this study was to examine the use of analysis of target-reaching movement indicators and muscle co-activation for diagnosing the rehabilitation process in post-stroke patients. Twenty ischemic stroke patients in the early post-stroke phase (up to three months after the stroke), and twenty healthy subjects (the control group) took part in the experiments. The novel approach of the proposed research proved the usefulness of this approach in the diagnosis of the rehabilitation efficiency of rehabilitation in early post-stroke phase patients.
Collapse
|