1
|
Alnaami I, Algarni A, Alqahtani SA, Alqahtani RM, Jabbar IA, Alhadi W, Alnujaymi BM, Alahmari SA, Asiri D, AlQahtani AM, Otaif MY. Vagal Nerve Stimulation in the Pediatric Population and Correlation between Family and Treatment Team Perspectives: Single-Center Experience. J Neurol Surg A Cent Eur Neurosurg 2024. [PMID: 38876464 DOI: 10.1055/a-2344-8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
BACKGROUND Vagal nerve stimulation (VNS) is an adjunctive therapy to pharmacologic treatment in patients with drug-resistant epilepsy. This study aimed to assess the efficacy of VNS therapy for seizure frequency reduction and improving the quality-of-life (QOL) measures in children with refractory epilepsy and to evaluate the correlation between the perspectives of families and those of the treating team. METHODS This was a prospective cohort study conducted at Abha Maternity and Children's Hospital, Saudi Arabia, from 2018 to 2022. A total of 21 pediatric patients who completed 1 year of follow-up after VNS implantation were included. Patients were aged between 2 and 14 years, with a mean age of 8.14 ± 3.92 years; 11 (52.4%) patients were females. Family and physician assessments were collected blinded to each other using the Clinical Global Impression of Improvement (CGI-I) scores and QOL assessments to evaluate the correlation between the families' and treating team's perspectives on VNS outcomes. RESULTS In this study, VNS showed significant efficacy in reducing the frequency of seizures. VNS significantly reduced the number of seizures per week from a baseline median of 35 to a median of 0.25 at the end of the follow-up period, representing a dramatic reduction of 99.3% (p < 0.001). The number of emergency department visits per year decreased from a baseline median of 12 to a median of 2, a reduction of 83.3% (p < 0.001), while the number of hospital admissions per year decreased from a baseline median of 3 to a median of 1, a 66.7% decrease (p < 0.001). The number of antiepileptic medications taken decreased from a median of four to three (p < 0.001). Notably, 28.57% of the patients achieved complete seizure freedom, and 38% exhibited significant improvement, with at least 50% reduction in seizure frequency. Importantly, none of the patients experienced an increase in seizure frequency following VNS treatment. The family and physician assessments showed varying degrees of alignment in perceptions, with "concentration" exhibiting a significant positive correlation (r = 0.498, p = 0.022), indicating noteworthy agreement, whereas verbal communication did not show a substantial correlation (r = - 0.062, p = 0.791), indicating a divergence of views. CONCLUSION VNS is a promising and well-tolerated therapy for individuals with intractable seizures, offering clinical benefits and potential enhancements in various aspects of QOL. The varying perceptions between family and physician assessments highlight the importance of considering multiple perspectives when evaluating treatment outcomes.
Collapse
Affiliation(s)
- Ibrahim Alnaami
- Division of Neurosurgery, Department of Surgery, King Khalid University, Abha, Saudi Arabia
- Department of Pediatric Neurosurgery, Abha Maternity and Children's Hospital, Abha, Saudi Arabia
| | - Abdullah Algarni
- Department of Occupational Health, Aseer Central Hospital, Abha, Saudi Arabia
| | - Saeed A Alqahtani
- Division of Neurology, Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | | | - Wajd Alhadi
- College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | | | - Dina Asiri
- Department of Pediatric Neurosurgery, Abha Maternity and Children's Hospital, Abha, Saudi Arabia
| | - Asma M AlQahtani
- Department of Emergency Medicine, Aseer Central Hospital, Abha, Saudi Arabia
| | - Mansour Y Otaif
- Division of Pediatric Neurology, Department of Pediatrics, Abha Maternity and Children's Hospital, Abha, Saudi Arabia
| |
Collapse
|
2
|
Wang X, Liu X, Zhao L, Shen Z, Gao K, Wang Y, Yu D, Yang L, Wang Y, You Y, Ji J, Chen J, Yan W. Local Neuronal Activity and the Hippocampal Functional Network Can Predict the Recovery of Consciousness in Individuals With Acute Disorders of Consciousness Caused by Neurological Injury. CNS Neurosci Ther 2024; 30:e70108. [PMID: 39508317 PMCID: PMC11541605 DOI: 10.1111/cns.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
AIMS There is limited research on predicting the recovery of consciousness in patients with acute disorders of consciousness (aDOC). The purpose of this study is to investigate the altered characteristics of the local neuronal activity indicated by the amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) of the hippocampus network in patients with aDOC caused by neurological injury and to explore whether these characteristics can predict the recovery of consciousness. METHODS Thirty-seven patients with aDOC were included, all of whom completed resting-state functional magnetic resonance imaging (rsfMRI) scans. The patients were divided into two groups based on prognosis of consciousness recovery, 24 patients were in prolonged disorders of consciousness (pDOC) and 13 in emergence from minimally conscious state (eMCS) at 3 months after neurological injury. Univariable and multivariate logistic regression analyses were used to investigate the clinical indicators affecting patients' recovery of consciousness. The ALFF values and FC of the hippocampal network were compared between patients with pDOC and those with eMCS. Additionally, we employed the support vector machine (SVM) method to construct a predictive model for prognosis of consciousness based on the ALFF and FC values of the aforementioned differential brain regions. The accuracy (ACC), area under the curve (AUC), sensitivity, and specificity were used to evaluate the efficacy of the model. RESULTS The FOUR score at onset and the length of mechanical ventilation (MV) were found to be significant influential factors for patients who recovered to eMCS at 3 months after onset. Patients who improved to eMCS showed significantly increased ALFF values in the right calcarine gyrus, left lingual gyrus, right middle temporal gyrus, and right precuneus compared to patients in a state of pDOC. Furthermore, significant increases in FC values of the hippocampal network were observed in the eMCS group, primarily involving the right lingual gyrus and bilateral precuneus, compared to the pDOC group. The predictive model constructed using ALFF alone or ALFF combined with FC values from the aforementioned brain regions demonstrated high accuracies of 83.78% and 81.08%, respectively, with AUCs of 95% and 94%, sensitivities of 0.92 for both models, and specificities of 0.92 for both models in predicting the recovery of consciousness in patients with aDOC. CONCLUSION The present findings demonstrate significant differences in the local ALFF and FC values of the hippocampus network between different prognostic groups of patients with aDOC. The constructed predictive model, which incorporates ALFF and FC values, has the potential to provide valuable insights for clinical decision-making and identifying potential targets for early intervention.
Collapse
Affiliation(s)
- Xi Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xingdong Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lin Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhiyan Shen
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kemeng Gao
- Department of Nuclear MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yu Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Danjing Yu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lin Yang
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ying Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yongping You
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Wei Yan
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
3
|
Yan L, Li H, Qian Y, Zhang J, Cong S, Zhang X, Wu L, Wang Y, Wang M, Yu T. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci 2024; 16:1334887. [PMID: 38476661 PMCID: PMC10927744 DOI: 10.3389/fnagi.2024.1334887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is an emerging non-invasive technique designed to stimulate branches of the vagus nerve distributed over the body surface. Studies suggest a correlation between the brain-gut-microbiota (BGM) axis and the pathogenesis of Alzheimer's disease (AD). The BGM axis represents a complex bidirectional communication system, with the vagus nerve being a crucial component. Therefore, non-invasive electrical stimulation of the vagus nerve might have the potential to modify-most of the time probably in a non-physiological way-the signal transmission within the BGM axis, potentially influencing the progression or symptoms of AD. This review explores the interaction between percutaneous vagus nerve stimulation and the BGM axis, emphasizing its potential effects on AD. It examines various aspects, such as specific brain regions, gut microbiota composition, maintenance of intestinal environmental homeostasis, inflammatory responses, brain plasticity, and hypothalamic-pituitary-adrenal (HPA) axis regulation. The review suggests that tVNS could serve as an effective strategy to modulate the BGM axis and potentially intervene in the progression or treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Junfeng Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemin Zhang
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Wu
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
4
|
Jigo M, Carmel JB, Wang Q, Rodenkirch C. Transcutaneous cervical vagus nerve stimulation improves sensory performance in humans: a randomized controlled crossover pilot study. Sci Rep 2024; 14:3975. [PMID: 38368486 PMCID: PMC10874458 DOI: 10.1038/s41598-024-54026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
Accurate senses depend on high-fidelity encoding by sensory receptors and error-free processing in the brain. Progress has been made towards restoring damaged sensory receptors. However, methods for on-demand treatment of impaired central sensory processing are scarce. Prior invasive studies demonstrated that continuous vagus nerve stimulation (VNS) in rodents can activate the locus coeruleus-norepinephrine system to rapidly improve central sensory processing. Here, we investigated whether transcutaneous VNS improves sensory performance in humans. We conducted three sham-controlled experiments, each with 12 neurotypical adults, that measured the effects of transcutaneous VNS on metrics of auditory and visual performance, and heart rate variability (HRV). Continuous stimulation was delivered to cervical (tcVNS) or auricular (taVNS) branches of the vagus nerve while participants performed psychophysics tasks or passively viewed a display. Relative to sham stimulation, tcVNS improved auditory performance by 37% (p = 0.00052) and visual performance by 23% (p = 0.038). Participants with lower performance during sham conditions experienced larger tcVNS-evoked improvements (p = 0.0040). Lastly, tcVNS increased HRV during passive viewing, corroborating vagal engagement. No evidence for an effect of taVNS was observed. These findings validate the effectiveness of tcVNS in humans and position it as a method for on-demand interventions of impairments associated with central sensory processing dysfunction.
Collapse
Affiliation(s)
| | - Jason B Carmel
- Sharper Sense, Inc., New York, NY, USA
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, USA
| | - Qi Wang
- Sharper Sense, Inc., New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Charles Rodenkirch
- Sharper Sense, Inc., New York, NY, USA.
- The Jacobs Technion-Cornell Institute at Cornell Tech, New York, NY, USA.
| |
Collapse
|
5
|
Abdullahi A, Wong TWL, Ng SSM. Effects and safety of vagus nerve stimulation on upper limb function in patients with stroke: a systematic review and meta-analysis. Sci Rep 2023; 13:15415. [PMID: 37723225 PMCID: PMC10507009 DOI: 10.1038/s41598-023-42077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Vagus nerve stimulation (VNS) is used to deliver electric current to stimulate the vagus nerve. The aim of this study is to carry out a systematic review and meta-analysis to determine its effects on motor function in patients with stroke. PubMED, Embase, Web of Science (WoS), and Scopus were searched. Data on time since stroke, and mean scores and standard deviation on outcomes such as level of impairment and motor function were extracted. The results showed that invasive (MD 2.66, 95% CI 1.19-4.13, P = 0.0004) and non-invasive (MD 24.16, 95% CI 23.56-24.75, P = 0.00001) VNS are superior at improving level of motor impairment than the control post intervention and at follow-up respectively. Similarly, VNS improved motor function post intervention (MD 0.28, 95% CI 0.15-0.41, P < 0.0001); and there was no significant difference in adverse events between invasive VNS and control (OR 2.15, 95% CI 0.97-4.74, P = 0.06), and between non-invasive VNS and control (OR 4.54, 95% CI 0.48-42.97, P = 0.19). VNS can be used to improve motor function in patients with stroke.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
6
|
Trifilio E, Shortell D, Olshan S, O’Neal A, Coyne J, Lamb D, Porges E, Williamson J. Impact of transcutaneous vagus nerve stimulation on healthy cognitive and brain aging. Front Neurosci 2023; 17:1184051. [PMID: 37575296 PMCID: PMC10416636 DOI: 10.3389/fnins.2023.1184051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 08/15/2023] Open
Abstract
Evidence for clinically meaningful benefits of transcutaneous vagus nerve stimulation (VNS) has been rapidly accumulating over the past 15 years. This relatively novel non-invasive brain stimulation technique has been applied to a wide range of neuropsychiatric disorders including schizophrenia, obsessive compulsive disorder, panic disorder, post-traumatic stress disorder, bipolar disorder, and Alzheimer's disease. More recently, non-invasive forms of VNS have allowed for investigations within healthy aging populations. These results offer insight into protocol considerations specific to older adults and how to translate those results into effective clinical trials and, ultimately, effective clinical care. In this review, we characterize the possible mechanisms by which non-invasive VNS may promote healthy aging (e.g., neurotransmitter effects, inflammation regulation, functional connectivity changes), special considerations for applying non-invasive VNS in an older adult population (e.g., vagus nerve changes with age), and how non-invasive VNS may be used in conjunction with existing behavioral interventions (e.g., cognitive behavioral therapy, cognitive training) to promote healthy emotional and cognitive aging.
Collapse
Affiliation(s)
- Erin Trifilio
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Destin Shortell
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah Olshan
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alexandria O’Neal
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jozee Coyne
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
| | - Damon Lamb
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eric Porges
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - John Williamson
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Colzato LS, Elmers J, Beste C, Hommel B. A Prospect to Ameliorate Affective Symptoms and to Enhance Cognition in Long COVID Using Auricular Transcutaneous Vagus Nerve Stimulation. J Clin Med 2023; 12:jcm12031198. [PMID: 36769845 PMCID: PMC9917620 DOI: 10.3390/jcm12031198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Long COVID, the postviral disorder caused by COVID-19, is expected to become one of the leading causes of disability in Europe. The cognitive consequences of long COVID have been described as "brain fog" and characterized by anxiety and depression, and by cognitive deficits. Long COVID is assumed to be a complex condition arising from multiple causes, including persistent brainstem dysfunction and disrupted vagal signaling. We recommend the potential application of auricular transcutaneous vagus nerve stimulation (atVNS) as an ADD-ON instrument to compensate for the cognitive decline and to ameliorate affective symptoms caused by long COVID. This technique enhances vagal signaling by directly activating the nuclei in the brainstem, which are hypoactive in long COVID to enhance mood and to promote attention, memory, and cognitive control-factors affected by long COVID. Considering that atVNS is a non-pharmacological intervention, its ADD-ON to standard pharmaceutical agents will be useful for non-responders, making of this method a suitable tool. Given that atVNS can be employed as an ecological momentary intervention (EMI), we outline the translational advantages of atVNS in the context of accelerating the cognitive and affective recovery from long COVID.
Collapse
Affiliation(s)
- Lorenza S. Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Christian Beste
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, 01307 Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|