Yu H, Kwon M. Altered Eye Movements During Reading With Simulated Central and Peripheral Visual Field Defects.
Invest Ophthalmol Vis Sci 2023;
64:21. [PMID:
37843494 PMCID:
PMC10584020 DOI:
10.1167/iovs.64.13.21]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose
Although foveal vision provides fine spatial information, parafoveal and peripheral vision are also known to be important for efficient reading behaviors. Here we systematically investigate how different types and sizes of visual field defects affect the way visual information is acquired via eye movements during reading.
Methods
Using gaze-contingent displays, simulated scotomas were induced in 24 adults with normal or corrected-to-normal vision during a reading task. The study design included peripheral and central scotomas of varying sizes (aperture or scotoma size of 2°, 4°, 6°, 8°, and 10°) and no-scotoma conditions. Eye movements (e.g., forward/backward saccades, fixations, microsaccades) were plotted as a function of either the aperture or scotoma size, and their relationships were characterized by the best fitting model.
Results
When the aperture size of the peripheral scotoma decreased below 6° (11 visible letters), there were significant decreases in saccade amplitude and velocity, as well as substantial increases in fixation duration and the number of fixations. Its dependency on the aperture size is best characterized by an exponential decay or growth function in log-linear coordinates. However, saccade amplitude and velocity, fixation duration, and forward/regressive saccades increased more or less linearly with increasing central scotoma size in log-linear coordinates.
Conclusions
Our results showed differential impacts of central and peripheral vision loss on reading behaviors while lending further support for the importance of foveal and parafoveal vision in reading. These apparently deviated oculomotor behaviors may in part reflect optimal reading strategies to compensate for the loss of visual information.
Collapse