Yu H. The neuroscience basis and educational interventions of mathematical cognitive impairment and anxiety: a systematic literature review.
Front Psychol 2023;
14:1282957. [PMID:
38098529 PMCID:
PMC10720715 DOI:
10.3389/fpsyg.2023.1282957]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction
Mathematics is a fundamental subject with significant implications in education and neuroscience. Understanding the cognitive processes underlying mathematical cognition is crucial for enhancing educational practices. However, mathematical cognitive impairment and anxiety significantly hinder learning and application in this field. This systematic literature review aims to investigate the neuroscience basis and effective educational interventions for these challenges.
Methods
The review involved a comprehensive screening of 62 research articles that meet the ESSA evidence levels from multiple databases. The selection criteria focused on studies employing various methodologies, including behavioral experiments and neuroimaging techniques, to explore the neuroscience underpinnings and educational interventions related to mathematical cognitive impairment and anxiety.
Results
The review identified key themes and insights into the neuroscience basis of mathematical cognitive impairment and anxiety. It also examined their impact on educational practices, highlighting the interplay between cognitive processes and educational outcomes. The analysis of these studies revealed significant findings on how these impairments and anxieties manifest and can be addressed in educational settings.
Discussion
The review critically analyzes the shortcomings of existing research, noting gaps and limitations in current understanding and methodologies. It emphasizes the need for more comprehensive and diverse studies to better understand these phenomena. The discussion also suggests new directions and potential improvement strategies for future research, aiming to contribute to more effective educational interventions and enhanced learning experiences in mathematics.
Conclusion
This systematic review provides valuable insights into the neuroscience basis of mathematical cognitive impairment and anxiety, offering a foundation for developing more effective educational strategies. It underscores the importance of continued research in this area to improve educational outcomes and support learners facing these challenges.
Collapse