1
|
Moreno-Fernández M, Luján V, Baliyan S, Poza C, Capellán R, de Las Heras-Martínez N, Morcillo MÁ, Oteo M, Ambrosio E, Ucha M, Higuera-Matas A. A Hidden Mark of a Troubled Past: Neuroimaging and Transcriptomic Analyses Reveal Interactive Effects of Maternal Immune Activation and Adolescent THC Exposure Suggestive of Increased Neuropsychiatric Risk. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100452. [PMID: 40115746 PMCID: PMC11925510 DOI: 10.1016/j.bpsgos.2025.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 01/12/2025] [Indexed: 03/23/2025] Open
Abstract
Background Maternal exposure to infections during gestation has been shown to predispose individuals to neuropsychiatric disorders. Additionally, clinical data suggest that cannabis use may trigger the onset of schizophrenia in vulnerable individuals. However, the direction of causality remains unclear. Methods To elucidate this issue, we utilized a rat model of maternal immune activation combined with exposure to increasing doses of Δ9-tetrahydrocannabinol during adolescence in both male and female rats. We investigated several behaviors in adulthood relevant for neuropsychiatric disorders, including impairments in working memory, deficits in sensorimotor gating, alterations in social behavior, anhedonia, and potential changes in implicit learning (conditioned taste aversion). Furthermore, we conducted a longitudinal positron emission tomography study to target affected brain regions and, subsequently, collected brain samples of one such region (the orbitofrontal cortex) for RNA sequencing analyses, which were also performed on peripheral blood mononuclear cells to identify peripheral biomarkers. Results While adolescent Δ9-tetrahydrocannabinol did not unmask latent behavioral disruptions, positron emission tomography scans revealed several brain alterations dependent on the combination of both hits. Additionally, the transcriptomic studies demonstrated that maternal immune activation affected dopaminergic, glutamatergic, and serotoninergic genes, with the combination of both exposures in most cases shifting the expression from downregulation to upregulation. In peripheral cells, interactive effects were observed on inflammatory pathways, and some genes were proposed as biomarkers. Conclusions These results suggest that the combination of these 2 vulnerability factors leaves a lasting mark on the body, potentially predisposing individuals to neuropsychiatric disorders even before behavioral alterations manifest.
Collapse
Affiliation(s)
- Mario Moreno-Fernández
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Víctor Luján
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
- National University of Distance Education International Graduate School (EIDUNED), Madrid, Spain
- Medical Application of Ionising Radiations Unit, Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | - Shishir Baliyan
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Celia Poza
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Roberto Capellán
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | | | - Miguel Ángel Morcillo
- Medical Application of Ionising Radiations Unit, Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | - Marta Oteo
- Medical Application of Ionising Radiations Unit, Centre for Energy, Environmental and Technological Research (CIEMAT), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| |
Collapse
|
2
|
Kent J, Pinkham A. Cerebral and cerebellar correlates of social cognitive impairment in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110850. [PMID: 37657639 DOI: 10.1016/j.pnpbp.2023.110850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Social cognition is a broad construct encompassing the ways in which individuals perceive, process, and use information about other people. Social cognition involves both lower- and higher-level processes such as emotion recognition and theory of mind, respectively. Social cognitive impairments have been repeatedly demonstrated in schizophrenia spectrum illnesses and, crucially, are related to functional outcomes. In this review, we summarize the literature investigating the brain networks implicated in social cognitive impairments in schizophrenia spectrum illnesses. In addition to cortical and limbic loci and networks, we also discuss evidence for cerebellar contributions to social cognitive impairment in this population. We conclude by synthesizing these two literatures, with an emphasis on current knowledge gaps, particularly in regard to cerebellar influences, and future directions.
Collapse
Affiliation(s)
- Jerillyn Kent
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Amy Pinkham
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States.
| |
Collapse
|
3
|
Grave J, Madeira N, Morais S, Rodrigues P, Soares SC. Emotional interference and attentional control in schizophrenia-spectrum disorders: The special case of neutral faces. J Behav Ther Exp Psychiatry 2023; 81:101892. [PMID: 37429124 DOI: 10.1016/j.jbtep.2023.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Schizophrenia-spectrum disorders (SSD) are characterized by impaired emotion processing and attention. SSD patients are more sensitive to the presence of emotional distractors. But despite growing interest on the emotion-attention interplay, emotional interference in SSD is far from fully understood. Moreover, research to date has not established the link between emotional interference and attentional control in SSD. This study thus aimed to investigate the effects of facial expression and attentional control in SSD, by manipulating perceptual load. METHODS Twenty-two SSD patients and 22 healthy controls performed a target-letter discrimination task with task-irrelevant angry, happy, and neutral faces. Target-letter was presented among homogenous (low load) or heterogenous (high load) distractor-letters. Accuracy and RT were analysed using (generalized) linear mixed-effect models. RESULTS Accuracy was significantly lower in SSD patients than controls, regardless of perceptual load and facial expression. Concerning RT, SSD patients were significantly slower than controls in the presence of neutral faces, but only at high load. No group differences were observed for angry and happy faces. LIMITATIONS Heterogeneity of SSD, small sample size, lack of clinical control group, medication. CONCLUSIONS One possible explanation is that neutral faces captured exogenous attention to a greater extent in SSD, thus challenging attentional control in perceptually demanding conditions. This may reflect abnormal processing of neutral faces in SSD. If replicated, these findings will help to understand the interplay between exogenous attention, attentional control, and emotion processing in SSD, which may unravel the mechanism underlying socioemotional dysfunction in SSD.
Collapse
Affiliation(s)
- Joana Grave
- William James Center for Research (WJCR-Aveiro), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Center for Health Technology and Services Research (CINTESIS@RISE), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Nuno Madeira
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; Institute of Psychological Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal; CACC-Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal
| | - Sofia Morais
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; Institute of Psychological Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal; CACC-Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal
| | - Paulo Rodrigues
- Department of Psychology and Education, University of Beira Interior, Estrada do Sineiro, 6200-209 Covilhã, Portugal
| | - Sandra C Soares
- William James Center for Research (WJCR-Aveiro), Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Orlov ND, Muqtadir SA, Oroojeni H, Averbeck B, Rothwell J, Shergill SS. Stimulating learning: A functional MRI and behavioral investigation of the effects of transcranial direct current stimulation on stochastic learning in schizophrenia. Psychiatry Res 2022; 317:114908. [PMID: 37732853 DOI: 10.1016/j.psychres.2022.114908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/19/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) of the medial prefrontal cortex (mPFC) is under clinical investigation as a treatment for cognitive deficits. We investigate the effects of tDCS over the mPFC on performance SSLT in individuals with schizophrenia, and the underlying neurophysiological effect in regions associated with learning values and stimulus-outcome relationships. In this parallel-design double-blind pilot study, 49 individuals with schizophrenia, of whom 28 completed a fMRI, were randomized into active or sham tDCS stimulation groups. Subjects participated in 4 days of SSLT training (days 1, 2, 14, 56) with tDCS applied at day-1, and during a concurrent MRI scan at day-14. The SSLT demonstrated a significant mean difference in performance in the tDCS treatment group: at day-2 and at day-56. Active tDCS was associated with increased insular activity, and reduced amygdala activation. tDCS may offer an important novel approach to modulating brain networks to ameliorate cognitive deficits in schizophrenia, with this study being the first to show a longer-term effect on SSLT.
Collapse
Affiliation(s)
- Natasza D Orlov
- Cognition Schizophrenia Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Liu Lab, Athinoula A. Martinos Center for Biomedical Imaging Center, Massachusetts General Hospital, Charlestown, MA, USA; Lab of Precision Brain Imaging, Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Syed Ali Muqtadir
- Cognition Schizophrenia Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Lahore University of Management and Sciences, Lon, Lahore, Pakistan
| | - Hooman Oroojeni
- Department of Computing, Goldsmiths College, London, United Kingdom
| | - Bruno Averbeck
- Laboratory for Neuropsychology Section on Learning and Decision Making, National Institute of Mental Health Research, Bethesda, MD, United States
| | - John Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - Sukhi S Shergill
- Cognition Schizophrenia Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Kent and Medway Medical School, Canterbury, United Kingdom
| |
Collapse
|
5
|
Dourron HM, Strauss C, Hendricks PS. Self-Entropic Broadening Theory: Toward a New Understanding of Self and Behavior Change Informed by Psychedelics and Psychosis. Pharmacol Rev 2022; 74:982-1027. [PMID: 36113878 DOI: 10.1124/pharmrev.121.000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 03/21/2025] Open
Abstract
The extremes of human experiences, such as those occasioned by classic psychedelics and psychosis, provide a rich contrast for understanding how components of these experiences impact well-being. In recent years, research has suggested that classic psychedelics display the potential to promote positive enduring psychologic and behavioral changes in clinical and nonclinical populations. Paradoxically, classic psychedelics have been described as psychotomimetics. This review offers a putative solution to this paradox by providing a theory of how classic psychedelics often facilitate persistent increases in well-being, whereas psychosis leads down a "darker" path. This will be done by providing an overview of the overlap between the states (i.e., entropic processing) and their core differences (i.e., self-focus). In brief, entropic processing can be defined as an enhanced overall attentional scope and decreased predictability in processing stimuli facilitating a hyperassociative style of thinking. However, the outcomes of entropic states vary depending on level of self-focus, or the degree to which the associations and information being processed are evaluated in a self-referential manner. We also describe potential points of overlap with less extreme experiences, such as creative thinking and positive emotion-induction. Self-entropic broadening theory offers a heuristically valuable perspective on classic psychedelics and their lasting effects and relation to other states by creating a novel synthesis of contemporary theories in psychology. SIGNIFICANCE STATEMENT: Self-entropic broadening theory provides a novel theory examining the psychedelic-psychotomimetic paradox, or how classic psychedelics can be therapeutic, yet mimic symptoms of psychosis. It also posits a framework for understanding the transdiagnostic applicability of classic psychedelics. We hope this model invigorates the field to provide more rigorous comparisons between classic psychedelic-induced states and psychosis and further examinations of how classic psychedelics facilitate long-term change. As a more psychedelic future of psychiatry appears imminent, a model that addresses these long-standing questions is crucial.
Collapse
Affiliation(s)
- Haley Maria Dourron
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| | - Camilla Strauss
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| | - Peter S Hendricks
- Drug Use & Behavior Laboratory, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama (H.M.D., P.S.H.) and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey (C.S.)
| |
Collapse
|
6
|
Fass DM, Lewis MC, Ahmad R, Szucs MJ, Zhang Q, Fleishman M, Wang D, Kim MJ, Biag J, Carr SA, Scolnick EM, Premont RT, Haggarty SJ. Brain-specific deletion of GIT1 impairs cognition and alters phosphorylation of synaptic protein networks implicated in schizophrenia susceptibility. Mol Psychiatry 2022; 27:3272-3285. [PMID: 35505090 PMCID: PMC9630168 DOI: 10.1038/s41380-022-01557-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Despite tremendous effort, the molecular and cellular basis of cognitive deficits in schizophrenia remain poorly understood. Recent progress in elucidating the genetic architecture of schizophrenia has highlighted the association of multiple loci and rare variants that may impact susceptibility. One key example, given their potential etiopathogenic and therapeutic relevance, is a set of genes that encode proteins that regulate excitatory glutamatergic synapses in brain. A critical next step is to delineate specifically how such genetic variation impacts synaptic plasticity and to determine if and how the encoded proteins interact biochemically with one another to control cognitive function in a convergent manner. Towards this goal, here we study the roles of GPCR-kinase interacting protein 1 (GIT1), a synaptic scaffolding and signaling protein with damaging coding variants found in schizophrenia patients, as well as copy number variants found in patients with neurodevelopmental disorders. We generated conditional neural-selective GIT1 knockout mice and found that these mice have deficits in fear conditioning memory recall and spatial memory, as well as reduced cortical neuron dendritic spine density. Using global quantitative phospho-proteomics, we revealed that GIT1 deletion in brain perturbs specific networks of GIT1-interacting synaptic proteins. Importantly, several schizophrenia and neurodevelopmental disorder risk genes are present within these networks. We propose that GIT1 regulates the phosphorylation of a network of synaptic proteins and other critical regulators of neuroplasticity, and that perturbation of these networks may contribute specifically to cognitive deficits observed in schizophrenia and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniel M. Fass
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Michael C. Lewis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Sage Therapeutics, Cambridge, MA, USA
| | - Rushdy Ahmad
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA,Wyss Institute at Harvard University, Boston, MA, USA
| | - Matthew J. Szucs
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA,Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dongqing Wang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Myung Jong Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan Biag
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Novartis Pharmaceuticals, Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Edward M. Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Richard T. Premont
- Harrington Discovery Institute, Cleveland, OH, 44106, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
7
|
Clinical observations and neuroscientific evidence tell a similar story: Schizophrenia is a disorder of the self-other boundary. Schizophr Res 2022; 242:45-48. [PMID: 35027299 DOI: 10.1016/j.schres.2021.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
|
8
|
Kesby JP, Murray GK, Knolle F. Neural Circuitry of Salience and Reward Processing in Psychosis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 3:33-46. [PMID: 36712572 PMCID: PMC9874126 DOI: 10.1016/j.bpsgos.2021.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
The processing of salient and rewarding stimuli is integral to engaging our attention, stimulating anticipation for future events, and driving goal-directed behaviors. Widespread impairments in these processes are observed in psychosis, which may be associated with worse functional outcomes or mechanistically linked to the development of symptoms. Here, we summarize the current knowledge of behavioral and functional neuroimaging in salience, prediction error, and reward. Although each is a specific process, they are situated in multiple feedback and feedforward systems integral to decision making and cognition more generally. We argue that the origin of salience and reward processing dysfunctions may be centered in the subcortex during the earliest stages of psychosis, with cortical abnormalities being initially more spared but becoming more prominent in established psychotic illness/schizophrenia. The neural circuits underpinning salience and reward processing may provide targets for delaying or preventing progressive behavioral and neurobiological decline.
Collapse
Affiliation(s)
- James P. Kesby
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia,Address correspondence to James Kesby, Ph.D.
| | - Graham K. Murray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Franziska Knolle
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom,Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany,Franziska Knolle, Ph.D.
| |
Collapse
|
9
|
Uono S, Sato W, Sawada R, Kawakami S, Yoshimura S, Toichi M. Schizotypy is associated with difficulties detecting emotional facial expressions. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211322. [PMID: 34849248 PMCID: PMC8611324 DOI: 10.1098/rsos.211322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
People with schizophrenia or subclinical schizotypal traits exhibit impaired recognition of facial expressions. However, it remains unclear whether the detection of emotional facial expressions is impaired in people with schizophrenia or high levels of schizotypy. The present study examined whether the detection of emotional facial expressions would be associated with schizotypy in a non-clinical population after controlling for the effects of IQ, age, and sex. Participants were asked to respond to whether all faces were the same as quickly and as accurately as possible following the presentation of angry or happy faces or their anti-expressions among crowds of neutral faces. Anti-expressions contain a degree of visual change that is equivalent to that of normal emotional facial expressions relative to neutral facial expressions and are recognized as neutral expressions. Normal expressions of anger and happiness were detected more rapidly and accurately than their anti-expressions. Additionally, the degree of overall schizotypy was negatively correlated with the effectiveness of detecting normal expressions versus anti-expressions. An emotion-recognition task revealed that the degree of positive schizotypy was negatively correlated with the accuracy of facial expression recognition. These results suggest that people with high levels of schizotypy experienced difficulties detecting and recognizing emotional facial expressions.
Collapse
Affiliation(s)
- Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation, and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Wataru Sato
- Kokoro Research Center, Kyoto University, 46 Shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Reiko Sawada
- Faculty of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- The Organization for Promoting Neurodevelopmental Disorder Research, 40 Shogoin-Sannocho, Sakyo-ku, Kyoto 606-8392, Japan
| | - Sayaka Kawakami
- Faculty of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation, and Rehabilitation, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Motomi Toichi
- Faculty of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- The Organization for Promoting Neurodevelopmental Disorder Research, 40 Shogoin-Sannocho, Sakyo-ku, Kyoto 606-8392, Japan
| |
Collapse
|
10
|
Feola B, McHugo M, Armstrong K, Noall MP, Flook EA, Woodward ND, Heckers S, Blackford JU. BNST and amygdala connectivity are altered during threat anticipation in schizophrenia. Behav Brain Res 2021; 412:113428. [PMID: 34182009 PMCID: PMC8404399 DOI: 10.1016/j.bbr.2021.113428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
In schizophrenia, impairments in affect are prominent and anxiety disorders are prevalent. Neuroimaging studies of fear and anxiety in schizophrenia have focused on the amygdala and show alterations in connectivity. Emerging evidence suggests that the bed nucleus of the stria terminalis (BNST) also plays a critical role in anxiety, especially during anticipation of an unpredictable threat; however, previous studies have not examined the BNST in schizophrenia. In the present study, we examined BNST function and connectivity in people with schizophrenia (n = 31; n = 15 with comorbid anxiety) and controls (n = 15) during anticipation of unpredictable and predictable threat. A secondary analysis tested for differences in activation and connectivity of the central nucleus of the amygdala (CeA), which has also been implicated in threat anticipation. Analyses tested for group differences in both activation and connectivity during anticipation of unpredictable threat and predictable threat (p < .05). Relative to controls, individuals with schizophrenia showed stronger BNST-middle temporal gyrus (MTG) connectivity during unpredictable threat anticipation and stronger BNST-MTG and BNST-dorsolateral prefrontal connectivity during predictable threat anticipation. Comparing subgroups of individuals with schizophrenia and a comorbid anxiety disorder (SZ+ANX) to those without an anxiety disorder (SZ-ANX) revealed broader patterns of altered connectivity. During unpredictable threat anticipation, the SZ+ANX group had stronger BNST connectivity with regions of the salience network (insula, dorsal anterior cingulate cortex). During predictable threat anticipation, the SZ+ANX group had stronger BNST connectivity with regions associated with fear processing (insula, extended amygdala, prefrontal cortex). A secondary CeA analysis revealed a different pattern; the SZ+ANX group had weaker CeA connectivity across multiple brain regions during threat anticipation compared to the SZ-ANX group. These findings provide novel evidence for altered functional connectivity during threat anticipation in schizophrenia, especially in individuals with comorbid anxiety.
Collapse
Affiliation(s)
- Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Madison P Noall
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elizabeth A Flook
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
11
|
Wisner KM, Johnson MK, Porter JN, Krueger RF, MacDonald AW. Task-related neural mechanisms of persecutory ideation in schizophrenia and community monozygotic twin-pairs. Hum Brain Mapp 2021; 42:5244-5263. [PMID: 34331484 PMCID: PMC8519853 DOI: 10.1002/hbm.25613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Perceptions of spiteful behavior are common, distinct from rational fear, and may undergird persecutory ideation. To test this hypothesis and investigate neural mechanisms of persecutory ideation, we employed a novel economic social decision‐making task, the Minnesota Trust Game (MTG), during neuroimaging in patients with schizophrenia (n = 30) and community monozygotic (MZ) twins (n = 38; 19 pairs). We examined distinct forms of mistrust, task‐related brain activation and connectivity, and investigated relationships with persecutory ideation. We tested whether co‐twin discordance on these measurements was correlated to reflect a common source of underlying variance. Across samples persecutory ideation was associated with reduced trust only during the suspiciousness condition, which assessed spite sensitivity given partners had no monetary incentive to betray. Task‐based activation contrasts for specific forms of mistrust were limited and unrelated to persecutory ideation. However, task‐based connectivity contrasts revealed a dorsal cingulate anterior insula network sensitive to suspicious mistrust, a left frontal–parietal (lF‐P) network sensitive to rational mistrust, and a ventral medial/orbital prefrontal (vmPFC/OFC) network that was sensitive to the difference between these forms of mistrust (all p < .005). Higher persecutory ideation was predicted only by reduced connectivity between the vmPFC/OFC and lF‐P networks (p = .005), which was only observed when the intentions of the other player were relevant. Moreover, co‐twin differences in persecutory ideation predicted co‐twin differences in both spite sensitivity and in vmPFC/OFC–lF‐P connectivity. This work found that interconnectivity may be particularly important to the complex neurobiology underlying persecutory ideation, and that unique environmental variance causally linked persecutory ideation, decision‐making, and brain connectivity.
Collapse
Affiliation(s)
- Krista M Wisner
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | | | - James N Porter
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert F Krueger
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angus W MacDonald
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Wang G, Lyu H, Wu R, Ou J, Zhu F, Liu Y, Zhao J, Guo W. Resting-state functional hypoconnectivity of amygdala in clinical high risk state and first-episode schizophrenia. Brain Imaging Behav 2021; 14:1840-1849. [PMID: 31134583 DOI: 10.1007/s11682-019-00124-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Resting-state functional hypoconnectivity of the amygdala with several brain regions has been identified in patients with schizophrenia. However, little is known about it in individuals at clinical high risk state. Treatment-seeking, drug-naive young adults were recruited for the study. The participants included 33 adults at Clinical High Risk (CHRs), 31 adults with first-episode schizophrenia (FSZs), and 37 age-, gender-, and education-matched healthy controls. All the participants were subjected to resting-state functional magnetic resonance imaging scans. Seed-based voxel-wise amygdala/whole-brain functional connectivity (FC) was calculated and compared. In the CHR group, the right amygdala showed decreased FC with clusters located in the left orbital, right temporal, insular, and bilateral frontal and cingulate areas. In the FSZ group, the right amygdala showed decreased FC with clusters located in the right temporal, insular, cingulate, and frontal areas. Exactly 30% of the voxels showing decreased FC in the FSZ group coincided with those in the CHR group. No difference in FC was identified between the CHR and FSZ groups. Voxel-wise FC values with the left or right amygdala in the bilateral occipital cortex were negatively correlated with the PANSS total score in the FSZ group. Resting-state functional hypoconnectivity of the amygdala is a valuable risk phenotype of schizophrenia, and its distribution, rather than degree, distinguishes CHR state from schizophrenia. This particular hypoconnectivity in CHRs and FSZs is relatively independent of the symptomatology and may reflect a dysfunctional dopamine system.
Collapse
Affiliation(s)
- Guodong Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Hailong Lyu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Furong Zhu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China.,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China. .,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China. .,National Technology Institute on Mental Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, China. .,Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China. .,National Technology Institute on Mental Disorders, Changsha, Hunan, China. .,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.
| |
Collapse
|
13
|
Abnormal semantic processing of threat words associated with excitement and hostility symptoms in schizophrenia. Schizophr Res 2021; 228:394-402. [PMID: 33549981 PMCID: PMC7988509 DOI: 10.1016/j.schres.2020.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Schizophrenia (SZ) is associated with devastating emotional, cognitive and language impairments. Understanding the deficits in each domain and their interactions is important for developing novel, targeted psychotherapies. This study tested whether negative-threat word processing is altered in individuals with SZ compared to healthy controls (HC), in relation to SZ symptom severity across domains. METHODS Thirty-one SZ and seventeen HC subjects were scanned with functional magnetic resonance imaging while silently reading negative-threat and neutral words. Post-scan, subjects rated the valence of each word. The effects of group (SZ, HC), word type (negative, neutral), task period (early, late), and severity of clinical symptoms (positive, negative, excitement/hostility, cognitive, depression/anxiety), on word valence ratings and brain activation, were analyzed. RESULTS SZ and HC subjects rated negative versus neutral words as more negative. The SZ subgroup with severe versus mild excitement/hostility symptoms rated the negative words as more negative. SZ versus HC subjects hyperactivated left language areas (angular gyrus, middle/inferior temporal gyrus (early period)) and the amygdala (early period) to negative words, and the amygdala (late period) to neutral words. In SZ, activation to negative versus neutral words in left dorsal temporal pole and dorsal anterior cingulate was positively correlated with excitement/hostility scores. CONCLUSIONS A negatively-biased behavioral response to negative-threat words was seen in SZ with severe versus mild excitement/hostility symptoms. The biased behavioral response was mediated by hyperactivation of brain networks associated with semantic processing of emotion concepts. Thus, word-level semantic processing may be a relevant psychotherapeutic target in SZ.
Collapse
|
14
|
Godlewska BR, Harmer CJ. Cognitive neuropsychological theory of antidepressant action: a modern-day approach to depression and its treatment. Psychopharmacology (Berl) 2021; 238:1265-1278. [PMID: 31938879 PMCID: PMC8062380 DOI: 10.1007/s00213-019-05448-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
Abstract
Depression is a leading cause of disability worldwide and improving its treatment is a core research priority for future programmes. A change in the view of psychological and biological processes, from seeing them as separate to complementing one another, has introduced new perspectives on pathological mechanisms of depression and treatment mode of action. This review presents a theoretical model that incorporated this novel approach, the cognitive neuropsychological hypothesis of antidepressant action. This model proposes that antidepressant treatments decrease the negative bias in the processing of emotionally salient information early in the course of antidepressant treatment, which leads to the clinically significant mood improvement later in treatment. The paper discusses the role of negative affective biases in the development of depression and response to antidepressant treatments. It also discusses whether the model can be applied to other antidepressant interventions and its potential translational value, including treatment choice, prediction of response and drug development.
Collapse
Affiliation(s)
- Beata R Godlewska
- Department of Psychiatry, Psychopharmacology Research Unit, University Department of Psychiatry (PPRU), University of Oxford, Oxford, UK.
- Department of Psychiatry, Psychopharmacology and Emotion Research Laboratory (PERL), University of Oxford, Oxford, UK.
- Oxford Health Foundation Trust, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK.
| | - Catherine J Harmer
- Department of Psychiatry, Psychopharmacology and Emotion Research Laboratory (PERL), University of Oxford, Oxford, UK
- Oxford Health Foundation Trust, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
15
|
Samaey C, Van der Donck S, van Winkel R, Boets B. Facial Expression Processing Across the Autism-Psychosis Spectra: A Review of Neural Findings and Associations With Adverse Childhood Events. Front Psychiatry 2020; 11:592937. [PMID: 33281648 PMCID: PMC7691238 DOI: 10.3389/fpsyt.2020.592937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) and primary psychosis are classified as distinct neurodevelopmental disorders, yet they display overlapping epidemiological, environmental, and genetic components as well as endophenotypic similarities. For instance, both disorders are characterized by impairments in facial expression processing, a crucial skill for effective social communication, and both disorders display an increased prevalence of adverse childhood events (ACE). This narrative review provides a brief summary of findings from neuroimaging studies investigating facial expression processing in ASD and primary psychosis with a focus on the commonalities and differences between these disorders. Individuals with ASD and primary psychosis activate the same brain regions as healthy controls during facial expression processing, albeit to a different extent. Overall, both groups display altered activation in the fusiform gyrus and amygdala as well as altered connectivity among the broader face processing network, probably indicating reduced facial expression processing abilities. Furthermore, delayed or reduced N170 responses have been reported in ASD and primary psychosis, but the significance of these findings is questioned, and alternative frequency-tagging electroencephalography (EEG) measures are currently explored to capture facial expression processing impairments more selectively. Face perception is an innate process, but it is also guided by visual learning and social experiences. Extreme environmental factors, such as adverse childhood events, can disrupt normative development and alter facial expression processing. ACE are hypothesized to induce altered neural facial expression processing, in particular a hyperactive amygdala response toward negative expressions. Future studies should account for the comorbidity among ASD, primary psychosis, and ACE when assessing facial expression processing in these clinical groups, as it may explain some of the inconsistencies and confound reported in the field.
Collapse
Affiliation(s)
- Celine Samaey
- Department of Neurosciences, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium
| | - Stephanie Van der Donck
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Ruud van Winkel
- Department of Neurosciences, Center for Clinical Psychiatry, KU Leuven, Leuven, Belgium
- University Psychiatric Center (UPC), KU Leuven, Leuven, Belgium
| | - Bart Boets
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Abstract
Adaptive social behavior and mental well-being depend on not only recognizing emotional expressions but also, inferring the absence of emotion. While the neurobiology underwriting the perception of emotions is well studied, the mechanisms for detecting a lack of emotional content in social signals remain largely unknown. Here, using cutting-edge analyses of effective brain connectivity, we uncover the brain networks differentiating neutral and emotional body language. The data indicate greater activation of the right amygdala and midline cerebellar vermis to nonemotional as opposed to emotional body language. Most important, the effective connectivity between the amygdala and insula predicts people's ability to recognize the absence of emotion. These conclusions extend substantially current concepts of emotion perception by suggesting engagement of limbic effective connectivity in recognizing the lack of emotion in body language reading. Furthermore, the outcome may advance the understanding of overly emotional interpretation of social signals in depression or schizophrenia by providing the missing link between body language reading and limbic pathways. The study thus opens an avenue for multidisciplinary research on social cognition and the underlying cerebrocerebellar networks, ranging from animal models to patients with neuropsychiatric conditions.
Collapse
|
17
|
Abram SV, De Coster L, Roach BJ, Mueller BA, van Erp TGM, Calhoun VD, Preda A, Lim KO, Turner JA, Ford JM, Mathalon DH, Woolley JD. Oxytocin Enhances an Amygdala Circuit Associated With Negative Symptoms in Schizophrenia: A Single-Dose, Placebo-Controlled, Crossover, Randomized Control Trial. Schizophr Bull 2020; 46:661-669. [PMID: 31595302 PMCID: PMC7147578 DOI: 10.1093/schbul/sbz091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Negative symptoms are core contributors to vocational and social deficits in schizophrenia (SZ). Available antipsychotic medications typically fail to reduce these symptoms. The neurohormone oxytocin (OT) is a promising treatment for negative symptoms, given its role in complex social behaviors mediated by the amygdala. In sample 1, we used a double-blind, placebo-controlled, crossover design to test the effects of a single dose of intranasal OT on amygdala resting-state functional connectivity (rsFC) in SZ (n = 22) and healthy controls (HC, n = 24) using a whole-brain corrected approach: we identified regions for which OT modulated SZ amygdala rsFC, assessed whether OT-modulated circuits were abnormal in SZ relative to HC on placebo, and evaluated whether connectivity on placebo and OT-induced connectivity changes correlated with baseline negative symptoms in SZ. Given our modest sample size, we used a second SZ (n = 183) and HC (n = 178) sample to replicate any symptom correlations. In sample 1, OT increased rsFC between the amygdala and left middle temporal gyrus, superior temporal sulcus, and angular gyrus (MTG/STS/AngG) in SZ compared to HC. Further, SZ had hypo-connectivity in this circuit compared to HC on placebo. More severe negative symptoms correlated with less amygdala-to-left-MTG/STS/AngG connectivity on placebo and with greater OT-induced connectivity increases. In sample 2, we replicated the correlation between amygdala-left-MTG/STS/AngG hypo-connectivity and negative symptoms, finding a specific association with expressive negative symptoms. These data suggest intranasal OT can normalize functional connectivity in an amygdala-to-left-MTG/STS/AngG circuit that contributes to negative symptoms in SZ.
Collapse
Affiliation(s)
- Samantha V Abram
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, and the University of California, San Francisco, CA,Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Lize De Coster
- Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM,Department of Psychiatry, University of New Mexico, Albuquerque, NM,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN
| | | | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Joshua D Woolley
- Mental Health Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA,Department of Psychiatry, University of California San Francisco, San Francisco, CA,To whom correspondence should be addressed; 4150 Clement Street, Box (116C-1 [Joshua Woolley]), San Francisco, CA 94121, US; tel: 415-221-4810-x24117; fax: 415-379-5667, e-mail:
| |
Collapse
|
18
|
Hajdúk M, Klein HS, Bass EL, Springfield CR, Pinkham AE. Implicit and explicit processing of bodily emotions in schizophrenia. Cogn Neuropsychiatry 2020; 25:139-153. [PMID: 31870213 DOI: 10.1080/13546805.2019.1706465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Disturbed emotion processing is well documented in schizophrenia, but the majority of studies evaluate processing of emotion only from facial expressions. Social cues are also communicated via body posture, and they are similarly relevant for successful social interactions. The aim of the current study was to thoroughly examine body perception abilities in individuals with schizophrenia. METHODS Fifty-nine patients with schizophrenia and 37 healthy controls completed two tasks of body processing. The first, which was based on the Affect Misattribution Procedure, evaluated implicit processing of bodily emotions, and the second utilised a traditional emotion identification paradigm to assess explicit emotion recognition. RESULTS Results revealed aberrant implicit processing, but more normative explicit processing, in individuals with schizophrenia. Moderate associations were found between processing of bodies and symptoms of paranoia. Performance on the tasks was not related to cognitive functioning but was associated with clinician-rated social functioning. CONCLUSIONS Collectively, these results provide information about disturbed processing of bodily emotions in schizophrenia and suggest that these disturbances are associated with the severity of positive symptoms and predict difficulties in everyday social activities and interpersonal relationships.
Collapse
Affiliation(s)
- Michal Hajdúk
- Department of Psychology, Faculty of Arts, Comenius University Bratislava, Slovak Republic.,Clinic of Psychiatry, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.,Center for Psychiatric Disorders Research - UK, Science Park, Comenius University in Bratislava, Slovak Republic
| | - Hans S Klein
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Emily L Bass
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Cassi R Springfield
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Amy E Pinkham
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, USA
| |
Collapse
|
19
|
Using fMRI and machine learning to predict symptom improvement following cognitive behavioural therapy for psychosis. NEUROIMAGE-CLINICAL 2018; 20:1053-1061. [PMID: 30343250 PMCID: PMC6197386 DOI: 10.1016/j.nicl.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022]
Abstract
Cognitive behavioural therapy for psychosis (CBTp) involves helping patients to understand and reframe threatening appraisals of their psychotic experiences to reduce distress and increase functioning. Whilst CBTp is effective for many, it is not effective for all patients and the factors predicting a good outcome remain poorly understood. Machine learning is a powerful approach that allows new predictors to be identified in a data-driven way, which can inform understanding of the mechanisms underlying therapeutic interventions, and ultimately make predictions about symptom improvement at the individual patient level. Thirty-eight patients with a diagnosis of schizophrenia completed a social affect task during functional MRI. Multivariate pattern analysis assessed whether treatment response in those receiving CBTp (n = 22) could be predicted by pre-therapy neural responses to facial affect that was either threat-related (ambiguous ‘neutral’ faces perceived as threatening in psychosis, in addition to angry and fearful faces) or prosocial (happy faces). The models predicted improvement in psychotic (r = 0.63, p = 0.003) and affective (r = 0.31, p = 0.05) symptoms following CBTp, but not in the treatment-as-usual group (n = 16). Psychotic symptom improvement was predicted by neural responses to threat-related affect across sensorimotor and frontal-limbic regions, whereas affective symptom improvement was predicted by neural responses to fearful faces only as well as prosocial affect across sensorimotor and frontal regions. These findings suggest that CBTp most likely improves psychotic and affective symptoms in those endorsing more threatening appraisals and mood-congruent processing biases, respectively, which are explored and reframed as part of the therapy. This study improves our understanding of the neurobiology of treatment response and provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.
Machine learning models using neuroimaging data can predict response to CBTp. Neural responses to social threat predicted improvement in psychotic symptoms. Activation related to different social stimuli predicted distinct symptom domains. Predictors included activity in the hippocampus, frontal, and sensorimotor regions.
Collapse
|
20
|
Feroz FS, Leicht G, Rauh J, Mulert C. The Time Course of Dorsal and Rostral-Ventral Anterior Cingulate Cortex Activity in the Emotional Stroop Experiment Reveals Valence and Arousal Aberrant Modulation in Patients with Schizophrenia. Brain Topogr 2018; 32:161-177. [PMID: 30288663 PMCID: PMC6327077 DOI: 10.1007/s10548-018-0677-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/10/2018] [Indexed: 11/05/2022]
Abstract
This paper aims to investigate the temporal dynamics within the dorsal anterior cingulate cortex (dACC) and the rostral-ventral (rv) ACC during the interaction of emotional valence and arousal with cognitive control in patients with Schizophrenia (SZ). Although cognitive deficits in SZ are highly relevant and emotional disturbances are common, the temporal relationship of brain regions involved in the interaction of emotional and cognitive processing in SZ is yet to be determined. To address this issue, the reaction time (RT), event-related potential (ERP) and temporal dynamics of the dACC and rvACC activity were compared between SZ subjects and healthy controls (HC), using a modified emotional Stroop experiment (with factors namely congruence, arousal and valence). EEG was recorded with 64 channels and source localisation was performed using the sLORETA software package. We observed slower initial increase and lower peaks of time course activity within the dACC and rvACC in the SZ group. In this particular group, the dACC activity during late negativity was negatively correlated with a significantly higher RT in the high arousal conflict condition. In contrast to HC subjects, at the N450 window, there was no significant valence (ERP and rvACC ROI) modulation effect in the SZ subjects. Using high density EEG and source localisation, it was possible to distinguish various disturbances within the dACC and rvACC in patients with SZ, during emotion–cognition processing.
Collapse
Affiliation(s)
- F S Feroz
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, 20246, Hamburg, Germany.,Center for Telecommunication Research and Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Malacca, Malaysia
| | - G Leicht
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, 20246, Hamburg, Germany
| | - J Rauh
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, 20246, Hamburg, Germany
| | - C Mulert
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg - Eppendorf, 20246, Hamburg, Germany. .,Centre for Psychiatry and Psychotherapy, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
21
|
Dubovyk V, Manahan-Vaughan D. Time-Dependent Alterations in the Expression of NMDA Receptor Subunits along the Dorsoventral Hippocampal Axis in an Animal Model of Nascent Psychosis. ACS Chem Neurosci 2018; 9:2241-2251. [PMID: 29634239 DOI: 10.1021/acschemneuro.8b00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Psychosis is a mental condition that is characterized by hallucinations, delusions, disordered thought, as well as socio-emotional and cognitive impairments. Once developed, it tends to progress into a chronic psychotic illness. Here, the duration of untreated psychosis plays a crucial role: the earlier the treatment begins, relative to the first episode of the disease, the better the patient's functional prognosis. To what extent the success of early interventions relate to progressive changes at the neurotransmitter receptor level is as yet unclear. In fact, very little is known as to how molecular changes develop, transform, and become established following the first psychotic event. One neurotransmitter receptor for which a specific role in psychosis has been discussed is the N-methyl-d-aspartate receptor (NMDAR). This receptor is especially important for information encoding in the hippocampus. The hippocampus is one of the loci of functional change in psychosis, to which a role in the pathophysiology of psychosis has been ascribed. Here, we examined whether changes in NMDAR subunit expression occur along the dorsoventral axis of the hippocampus 1 week and 3 months after systemic treatment with an NMDAR antagonist (MK801) that initiates a psychosis-like state in adult rats. We found early (1 week) upregulation of the GluN2B levels in the dorso-intermediate hippocampus and late (3 month) downregulation of GluN2A expression across the entire CA1 region. The ventral hippocampus did not exhibit subunit expression changes. These data suggest that a differing vulnerability of the hippocampal longitudinal axis may occur in response to MK801-treatment and provide a time-resolved view of the putative development of pathological changes of NMDAR subunit expression in the hippocampus that initiate with an emulated first episode and progress through to the chronic stabilization of a psychosis-like state in rodents.
Collapse
|
22
|
Abstract
The high prevalence of nicotine dependence contributes to excess mortality in schizophrenia. Cue reactivity, or the encounter of drug-related cues or contexts, triggers craving, drug-seeking, and relapse. Prior functional magnetic resonance imaging (fMRI) research indicates that individuals with schizophrenia have blunted neural responses to rewarding stimuli in association with more severe negative symptoms. The objectives of this study are to determine if smokers with schizophrenia have altered neural reactivity to smoking cues compared with non-psychiatrically ill smokers and to evaluate the influence of negative symptoms on cue reactivity. Twenty smokers with schizophrenia and 19 control smokers underwent fMRI while viewing smoking-related and neutral cues. The primary analysis was group comparison of Smoking-Neutral contrast using whole-brain analysis (Pcorrected < .05). Smokers with schizophrenia had significantly greater baseline carbon monoxide levels and longer duration of smoking, suggesting more nicotine use. While both groups had greater brain reactivity to smoking vs neutral cues, smokers with schizophrenia had significantly decreased cue reactivity (Smoking-Neutral) compared to controls in bilateral frontal midline regions. There were significant negative correlations between negative symptoms and frontal midline reactivity. Despite greater nicotine use, smokers with schizophrenia exhibited decreased smoking cue-induced neural reactivity in frontal midline regions, suggesting that increased smoking and low cessation rates in schizophrenia are not primarily driven by responses to smoking-related cues. The finding of negative correlations between cue reactivity and negative symptoms is consistent with previous research demonstrating decreased neural responses to rewarding cues, particularly in patients with negative symptoms.
Collapse
Affiliation(s)
- Lauren V Moran
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA,To whom correspondence should be addressed; McLean Hospital, 115 Mill Street, AB3S, Belmont, MA 02478, US; tel: 617-855-3395; fax: 617-855-2895; e-mail:
| | - Jennifer M Betts
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA
| | - Dost Ongur
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA
| | - Amy C Janes
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA
| |
Collapse
|