1
|
Ross RE, Saladin ME, George MS, Gregory CM. Acute effects of aerobic exercise on corticomotor plasticity in individuals with and without depression. J Psychiatr Res 2024; 176:108-118. [PMID: 38852541 PMCID: PMC11283944 DOI: 10.1016/j.jpsychires.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Although complex in nature, the pathophysiology of depression involves reduced or impaired neuroplastic capabilities. Restoring or enhancing neuroplasticity may serve as a treatment target for developing therapies for depression. Aerobic exercise (AEx) has antidepressant benefits and may enhance neuroplasticity in depression although the latter has yet to be substantiated. Therefore, we sought to examine the acute effect of AEx on neuroplasticity in depression. METHODS Sixteen individuals with (DEP; 13 female; age = 28.5 ± 7.3; Montgomery-Äsberg Depression Rating Scale [MADRS] = 21.3 ± 5.2) and without depression (HC; 13 female; age 27.2 ± 7.5; MADRS = 0.8 ± 1.2) completed three experimental visits consisting of 15 min of low intensity AEx (LO) at 35% heart rate reserve (HRR), high intensity AEx (HI) at 70% HRR, or sitting (CON). Following AEx, excitatory paired associative stimulation (PAS25ms) was employed to probe neuroplasticity. Motor evoked potentials (MEP) were assessed via transcranial magnetic stimulation before and after PAS25ms to indicate acute changes in neuroplasticity. RESULTS PAS25ms primed with HI AEx led to significant increases in MEP amplitude compared to LO and CON. HI AEx elicited enhanced PAS25ms-induced neuroplasticity for up to 1-h post-PAS. There were no significant between-group differences. CONCLUSION HI AEx enhances PAS measured neuroplasticity in individuals with and without depression. HI AEx may have a potent influence on the brain and serve as an effective primer, or adjunct, to therapies that seek to harness neuroplasticity.
Collapse
Affiliation(s)
- Ryan E Ross
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Michael E Saladin
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Chris M Gregory
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
2
|
Ferreira SA, Pinto N, Serrenho I, Pato MV, Baltazar G. Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation: a systematic review. Neural Regen Res 2024; 19:116-123. [PMID: 37488852 PMCID: PMC10479834 DOI: 10.4103/1673-5374.374140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases, and although most studies focus on its effects on neuronal cells, the contribution of non-neuronal cells to the improvement triggered by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested. To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases, Web of Science and PubMed were searched for the effects of high-frequency-repetitive transcranial magnetic stimulation, low-frequency-repetitive transcranial magnetic stimulation, intermittent theta-burst stimulation, continuous theta-burst stimulation, or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells. A total of 52 studies were included. The protocol more frequently used was high-frequency-repetitive magnetic stimulation, and in models of disease, most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and microglial reactivity, a decrease in the release of pro-inflammatory cytokines, and an increase of oligodendrocyte proliferation. The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation. Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol, and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines, reporting the absence of effects on these parameters. In what concerns the use of magnetic stimulation in unlesioned animals or cells, most articles on all four types of stimulation reported a lack of effects. It is also important to point out that the studies were developed mostly in male rodents, not evaluating possible differential effects of repetitive transcranial magnetic stimulation between sexes. This systematic review supports that through modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models. However, it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects, emphasizing the need for more studies in this field.
Collapse
Affiliation(s)
- Susana A. Ferreira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Nuno Pinto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
- GRUBI-Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
| | - Inês Serrenho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Vaz Pato
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
- GRUBI-Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
| | - Graça Baltazar
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
3
|
Schapira G, Chang J, Kim Y, Ngo JP, Deblieck C, Bianco V, Edwards DJ, Dobkin BH, Wu AD, Iacoboni M. Intraclass Correlation in Paired Associative Stimulation and Metaplasticity. NEUROSCI 2022; 3:589-603. [PMID: 39483766 PMCID: PMC11523748 DOI: 10.3390/neurosci3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/03/2024] Open
Abstract
Paired associative stimulation (PAS) is a widely used noninvasive brain stimulation protocol to assess neural plasticity. Its reproducibility, however, has been rarely tested and with mixed results. With two consecutive studies, we aimed to provide further tests and a more systematic assessment of PAS reproducibility. We measured intraclass correlation coefficients (ICCs)-a widely used tool to assess whether groups of measurements resemble each other-in two PAS studies on healthy volunteers. The first study included five PAS sessions recording 10 MEPS every 10 min for an hour post-PAS. The second study included two PAS sessions recording 50 MEPS at 20 and 50 min post-PAS, based on analyses from the first study. In both studies PAS sessions were spaced one week apart. Within sessions ICC was fair to excellent for both studies, yet between sessions ICC was poor for both studies. We suggest that long term meta-plasticity effects (longer than one week) may interfere with between sessions reproducibility.
Collapse
Affiliation(s)
- Giuditta Schapira
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Justin Chang
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yeun Kim
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jacqueline P. Ngo
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Choi Deblieck
- Antwerp Management School, University of Antwerp, 2000 Antwerpen, Belgium
| | - Valentina Bianco
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00185 Rome, Italy
| | - Dylan J. Edwards
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
| | - Bruce H. Dobkin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Allan D. Wu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Marco Iacoboni
- Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Cai Z, Pellegrino G, Lina J, Benali H, Grova C. Hierarchical Bayesian modeling of the relationship between task-related hemodynamic responses and cortical excitability. Hum Brain Mapp 2022; 44:876-900. [PMID: 36250709 PMCID: PMC9875942 DOI: 10.1002/hbm.26107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/10/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023] Open
Abstract
Investigating the relationship between task-related hemodynamic responses and cortical excitability is challenging because it requires simultaneous measurement of hemodynamic responses while applying noninvasive brain stimulation. Moreover, cortical excitability and task-related hemodynamic responses are both associated with inter-/intra-subject variability. To reliably assess such a relationship, we applied hierarchical Bayesian modeling. This study involved 16 healthy subjects who underwent simultaneous Paired Associative Stimulation (PAS10, PAS25, Sham) while monitoring brain activity using functional Near-Infrared Spectroscopy (fNIRS), targeting the primary motor cortex (M1). Cortical excitability was measured by Motor Evoked Potentials (MEPs), and the motor task-related hemodynamic responses were measured using fNIRS 3D reconstructions. We constructed three models to investigate: (1) PAS effects on the M1 excitability, (2) PAS effects on fNIRS hemodynamic responses to a finger tapping task, and (3) the correlation between PAS effects on M1 excitability and PAS effects on task-related hemodynamic responses. Significant increase in cortical excitability was found following PAS25, whereas a small reduction of the cortical excitability was shown after PAS10 and a subtle increase occurred after sham. Both HbO and HbR absolute amplitudes increased after PAS25 and decreased after PAS10. The probability of the positive correlation between modulation of cortical excitability and hemodynamic activity was 0.77 for HbO and 0.79 for HbR. We demonstrated that PAS stimulation modulates task-related cortical hemodynamic responses in addition to M1 excitability. Moreover, the positive correlation between PAS modulations of excitability and hemodynamics brought insight into understanding the fundamental properties of cortical function and cortical excitability.
Collapse
Affiliation(s)
- Zhengchen Cai
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
| | - Jean‐Marc Lina
- Département de Génie ElectriqueÉcole de Technologie SupérieureMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| | - Habib Benali
- PERFORM CentreConcordia UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada,Electrical and Computer Engineering Department, Concordia UniversityMontréalCanada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| |
Collapse
|
5
|
Sui YF, Tong LQ, Zhang XY, Song ZH, Guo TC. Effects of paired associated stimulation with different stimulation position on motor cortex excitability and upper limb motor function in patients with cerebral infarction. J Clin Neurosci 2021; 90:363-369. [PMID: 34275577 DOI: 10.1016/j.jocn.2021.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the effects of paired associated stimulation (PAS) with different stimulation position on motor cortex excitability and upper limb motor function in patients with cerebral infarction. METHOD A total of 120 volunteers with cerebral infarction were randomly divided into four groups. Based on conventional rehabilitation treatment, the PAS stimulation group was given the corresponding position of PAS treatment once a day for 28 consecutive days. The MEP amplitude and RMT of both hemispheres were assessed before and after treatment, and a simple upper limb Function Examination Scale (STEF) score, simplified upper limb Fugl-Meyer score (FMA), and improved Barthel Index (MBI) were used to assess upper limb motor function in the four groups. RESULTS Following PAS, the MEP amplitude decreased, and the RMT of abductor pollicis brevis (APB) increased on the contralesional side, while the MEP amplitude increased and the RMT of APB decreased on the ipsilesional side. After 28 consecutive days the scores of STEF, FMA, and MBI in the bilateral stimulation group were significantly better than those in the ipsilesional stimulation group and the contralesional stimulation group, but there was no significant difference in the scores of STEF, FMA, and MBI between the ipsilesional stimulation group and the contralesional stimulation group. CONCLUSION The excitability of the motor cortex can be changed when the contralesional side or the ipsilesional side was given the corresponding PAS stimulation, while the bilateral PAS stimulation can more easily cause a change of excitability of the motor cortex, resulting in better recovery of the upper limb function.
Collapse
Affiliation(s)
- Yan-Fang Sui
- Department of Rehabilitation Medicine, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Liang-Qian Tong
- Department of Rehabilitation Medicine, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China
| | - Xiang-Yu Zhang
- Department of Rehabilitation Medicine, The 5th Hospital of Zhengzhou University, Zhengzhou 470000, China
| | - Zhen-Hua Song
- Department of Rehabilitation Medicine, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, China.
| | - Tie-Cheng Guo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Özyurt MG, Haavik H, Nedergaard RW, Topkara B, Şenocak BS, Göztepe MB, Niazi IK, Türker KS. Transcranial magnetic stimulation induced early silent period and rebound activity re-examined. PLoS One 2019; 14:e0225535. [PMID: 31800618 PMCID: PMC6892484 DOI: 10.1371/journal.pone.0225535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Despite being widely studied, the underlying mechanisms of transcranial magnetic brain stimulation (TMS) induced motor evoked potential (MEP), early cortical silent period (CSP) and rebound activity are not fully understood. Our aim is to better characterize these phenomena by combining various analysis tools on firing motor units. Responses of 29 tibialis anterior (TA) and 8 abductor pollicis brevis (APB) motor units to TMS pulses were studied using discharge rate and probability-based tools to illustrate the profile of the synaptic potentials as they develop on motoneurons in 24 healthy volunteers. According to probability-based methods, TMS pulse produces a short-latency MEP which is immediately followed by CSP that terminates at rebound activity. Discharge rate analysis, however, revealed not three, but just two events with distinct time courses; a long-lasting excitatory period (71.2 ± 9.0 ms for TA and 42.1 ± 11.2 ms for APB) and a long-latency inhibitory period with duration of 57.9 ± 9.5 ms for TA and 67.3 ± 13.8 ms for APB. We propose that part of the CSP may relate to the falling phase of net excitatory postsynaptic potential induced by TMS. Rebound activity, on the other hand, may represent tendon organ inhibition induced by MEP activated soleus contraction and/or long-latency intracortical inhibition. Due to generation of field potentials when high intensity TMS is used, this study is limited to investigate the events evoked by low intensity TMS only and does not provide information about later parts of much longer CSPs induced by high intensity TMS. Adding discharge rate analysis contributes to obtain a more accurate picture about the characteristics of TMS-induced events. These results have implications for interpreting motor responses following TMS for diagnosis and overseeing recovery from various neurological conditions.
Collapse
Affiliation(s)
| | - Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | | | | | - Beatrice Selen Şenocak
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States of America
| | | | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | | |
Collapse
|
7
|
Liu T, Li Y, Shen Y, Liu X, Yuan TF. Gender does not matter: Add-on repetitive transcranial magnetic stimulation treatment for female methamphetamine dependents. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:70-75. [PMID: 30605708 DOI: 10.1016/j.pnpbp.2018.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) targeting prefrontal cortex reduces craving in different types of drug addiction. However, most studies failed to elucidate the potential gender discrepancies for the treatment effects, due to the small percentage of female subjects enrolled. The present study prospectively recruited female methamphetamine dependents for TMS treatment. METHODS Ninety female methamphetamine dependents were randomly assigned into the control group (routine addiction rehabilitation) or add-on 10 Hz group (routine addiction rehabilitation plus 20 times rTMS treatments). The craving scores to drug associated cues were examined as the primary outcome for this treatment. RESULTS The results showed that add-on rTMS treatment was as well effective in female methamphetamine dependents, and the effect lasted for at least 30 days after treatment. Drug abuse history predicts the efficacy of chronic treatment, and the effects of TMS treatment was more pronounced in young, high-craving subjects. CONCLUSIONS Add-on high frequency rTMS treatment is as well tolerable and effective in female methamphetamine dependents.
Collapse
Affiliation(s)
- Ting Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Psychology, Nanjing Normal University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yongqiang Li
- Rehabilitation Medicine Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Rehabilitation Medicine Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Psychology, Nanjing Normal University, Nanjing, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|