1
|
Yang C, Nolte IM, Ma Y, An X, Bosker FJ, Li J. The associations of CNR1 SNPs and haplotypes with vulnerability and treatment response phenotypes in Han Chinese with major depressive disorder: A case-control association study. Mol Genet Genomic Med 2021; 9:e1752. [PMID: 34355541 PMCID: PMC8457701 DOI: 10.1002/mgg3.1752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/30/2021] [Accepted: 07/09/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Understanding how genetic polymorphisms are associated with the pathophysiology of major depressive disorder (MDD) may aid in diagnosis and the development of personalized treatment strategies. CNR1 is the gene coding Cannabinoid type 1 receptor which is highly involved in emotional processing and in regulating neurotransmitter releases. We aimed to investigate the associations of CNR1 single-nucleotide polymorphisms (SNPs) with MDD susceptibility and treatment response. METHODS The study reported data on 181 Han Chinese with MDD and 80 healthy controls. The associations of CNR1 genetic polymorphisms with MDD susceptibility and treatment response were examined, wherein the MDD patients were subgrouped further by responding to antidepressant treatment, compared with healthy controls separately. RESULTS The CNR1 SNPs rs806367 and rs6454674 and haplotype C-T-T-C of rs806366, rs806367, rs806368, and rs806370 were associated with increased susceptibility for MDD and antidepressant treatment resistance, but the association was not detected in other SNPs or the haplotype block of rs806368 and rs806370. CONCLUSION The CNR1 is a promising candidate for the genetic association study of MDD. Larger and well-characterized samples are required to confirm the genetic association of CNR1 with MDD because of the limitations such as relatively small sample size and lack of information for correcting confounding factors.
Collapse
Affiliation(s)
- Chenghao Yang
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Tianjin, China.,University Centre of Psychiatry, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yanyan Ma
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Tianjin, China
| | - Xuguang An
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Tianjin, China
| | - Fokko J Bosker
- University Centre of Psychiatry, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.,Research School Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Jie Li
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
2
|
Blum K, Morgan J, Cadet JL, Baron D, Carney PR, Khalsa J, Badgaiyan RD, Gold MS. Psychoactive Drugs Like Cannabis -Induce Hypodopaminergic Anhedonia and Neuropsychological Dysfunction in Humans: Putative Induction of Dopamine Homeostasis via Coupling of Genetic Addiction Risk Severity (GARS) testing and Precision Pro-dopamine Regulation (KB220). NEUROLOGY (E-CRONICON) 2021; 13:86-92. [PMID: 34085060 PMCID: PMC8171216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many US states now embrace the medical and recreational use of Cannabis. Changes in the laws have heightened interest and encouraged research into both cannabinoid products and the potential harms of Cannabis use, addiction and intoxication. The major active ingredient of Cannabis sativa (marijuana), Δ9-tetrahydrocannabinol (THC) and it powerfully stimulates the type-1 cannabinoid (CB1) receptor. When used in the form of the plant marijuana, because of the many compounds that exist in the plant form they could inhibit the activity of the CB1 receptor thereby reducing many of the effects of THC. While this mechanism seems correct, in our opinion, Vallee., et al. incorrectly suggest that blocking CB1 receptors could open unforeseen approaches to the treatment of cannabis intoxication and addiction. We caution the scientific community that, other CB1 receptor blockers, such as, Rimonabant (SR141718) have been pulled off the market in Europe. In addition, CB1 receptor blockers were rejected by the FDA due to mood changes including suicide ideation. We argue that one issue facing the scientific community, has to do with the increasing legalization of Cannabis products in many states across America. We are in favor of some reform in terms of either decriminalization or restrictive legalization especially in control of legal limits of THC. Like other psychoactive compounds at high doses, it is our hypothesis that chronic use of these drugs including high THC content in its various forms (wax, smoke or vapor) resulting in brain reward dysfunction induces an imbalance of neurotransmission and subsequent hypodopaminergia and lead to aberrant substance and non-substance (behavioral) addictions. It is further proposed that in order to overcome THC and even other psychoactive drugs of abuse induced anhedonia the coupling of genetic risk testing and pro dopamine regulation is warranted.
Collapse
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Pomona, CA, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Division of Nutrigenomics, Precision Translational Medicine, LLC., San Antonio, TX, USA
- Division of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
- Department of Psychiatry, University of Vermont, VT, USA
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH, USA
| | - Joseph Morgan
- Substance Use Disorders Institute University of Sciences, Philadelphia, PA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - David Baron
- Western University Health Sciences, Pomona, CA, USA
| | - Paul R Carney
- Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jag Khalsa
- Department of Microbiology, immunology and Tropical Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|