1
|
Frye RE, Rincon N, McCarty PJ, Brister D, Scheck AC, Rossignol DA. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol Dis 2024; 197:106520. [PMID: 38703861 DOI: 10.1016/j.nbd.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 36 children and is associated with physiological abnormalities, most notably mitochondrial dysfunction, at least in a subset of individuals. This systematic review and meta-analysis discovered 204 relevant articles which evaluated biomarkers of mitochondrial dysfunction in ASD individuals. Significant elevations (all p < 0.01) in the prevalence of lactate (17%), pyruvate (41%), alanine (15%) and creatine kinase (9%) were found in ASD. Individuals with ASD had significant differences (all p < 0.01) with moderate to large effect sizes (Cohen's d' ≥ 0.6) compared to controls in mean pyruvate, lactate-to-pyruvate ratio, ATP, and creatine kinase. Some studies found abnormal TCA cycle metabolites associated with ASD. Thirteen controlled studies reported mitochondrial DNA (mtDNA) deletions or variations in the ASD group in blood, peripheral blood mononuclear cells, lymphocytes, leucocytes, granulocytes, and brain. Meta-analyses discovered significant differences (p < 0.01) in copy number of mtDNA overall and in ND1, ND4 and CytB genes. Four studies linked specific mtDNA haplogroups to ASD. A series of studies found a subgroup of ASD with elevated mitochondrial respiration which was associated with increased sensitivity of the mitochondria to physiological stressors and neurodevelopmental regression. Lactate, pyruvate, lactate-to-pyruvate ratio, carnitine, and acyl-carnitines were associated with clinical features such as delays in language, social interaction, cognition, motor skills, and with repetitive behaviors and gastrointestinal symptoms, although not all studies found an association. Lactate, carnitine, acyl-carnitines, ATP, CoQ10, as well as mtDNA variants, heteroplasmy, haplogroups and copy number were associated with ASD severity. Variability was found across biomarker studies primarily due to differences in collection and processing techniques as well as the intrinsic heterogeneity of the ASD population. Several studies reported alterations in mitochondrial metabolism in mothers of children with ASD and in neonates who develop ASD. Treatments targeting mitochondria, particularly carnitine and ubiquinol, appear beneficial in ASD. The link between mitochondrial dysfunction in ASD and common physiological abnormalities in individuals with ASD including gastrointestinal disorders, oxidative stress, and immune dysfunction is outlined. Several subtypes of mitochondrial dysfunction in ASD are discussed, including one related to neurodevelopmental regression, another related to alterations in microbiome metabolites, and another related to elevations in acyl-carnitines. Mechanisms linking abnormal mitochondrial function with alterations in prenatal brain development and postnatal brain function are outlined. Given the multisystem complexity of some individuals with ASD, this review presents evidence for the mitochondria being central to ASD by contributing to abnormalities in brain development, cognition, and comorbidities such as immune and gastrointestinal dysfunction as well as neurodevelopmental regression. A diagnostic approach to identify mitochondrial dysfunction in ASD is outlined. From this evidence, it is clear that many individuals with ASD have alterations in mitochondrial function which may need to be addressed in order to achieve optimal clinical outcomes. The fact that alterations in mitochondrial metabolism may be found during pregnancy and early in the life of individuals who eventually develop ASD provides promise for early life predictive biomarkers of ASD. Further studies may improve the understanding of the role of the mitochondria in ASD by better defining subgroups and understanding the molecular mechanisms driving some of the unique changes found in mitochondrial function in those with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Southwest Autism Research and Resource Center, Phoenix, AZ, USA; Rossignol Medical Center, Phoenix, AZ, USA.
| | | | - Patrick J McCarty
- Tulane University School of Medicine, New Orleans, LA 70113, United States of America.
| | | | - Adrienne C Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States of America.
| | - Daniel A Rossignol
- Autism Discovery and Treatment Foundation, Phoenix, AZ, USA; Rossignol Medical Center, Aliso Viejo, CA, USA
| |
Collapse
|
2
|
Frye RE, McCarty PJ, Werner BA, Rose S, Scheck AC. Bioenergetic signatures of neurodevelopmental regression. Front Physiol 2024; 15:1306038. [PMID: 38449786 PMCID: PMC10916717 DOI: 10.3389/fphys.2024.1306038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Background: Studies have linked autism spectrum disorder (ASD) to physiological abnormalities including mitochondrial dysfunction. Mitochondrial dysfunction may be linked to a subset of children with ASD who have neurodevelopmental regression (NDR). We have developed a cell model of ASD which demonstrates a unique mitochondrial profile with mitochondrial respiration higher than normal and sensitive to physiological stress. We have previously shown similar mitochondrial profiles in individuals with ASD and NDR. Methods: Twenty-six ASD individuals without a history of NDR (ASD-NoNDR) and 15 ASD individuals with a history of NDR (ASD-NDR) were recruited from 34 families. From these families, 30 mothers, 17 fathers and 5 typically developing (TD) siblings participated. Mitochondrial respiration was measured in peripheral blood mononuclear cells (PBMCs) with the Seahorse 96 XF Analyzer. PBMCs were exposed to various levels of physiological stress for 1 h prior to the assay using 2,3-dimethoxy-1,4-napthoquinone. Results: ASD-NDR children were found to have higher respiratory rates with mitochondria that were more sensitive to physiological stress as compared to ASD-NoNDR children, similar to our cellular model of NDR. Differences in mitochondrial respiration between ASD-NDR and TD siblings were similar to the differences between ASD-NDR and ASD-NoNDR children. Interesting, parents of children with ASD and NDR demonstrated patterns of mitochondrial respiration similar to their children such that parents of children with ASD and NDR demonstrated elevated respiratory rates with mitochondria that were more sensitive to physiological stress. In addition, sex differences were seen in ASD children and parents. Age effects in parents suggested that mitochondria of older parents were more sensitive to physiological stress. Conclusion: This study provides further evidence that children with ASD and NDR may have a unique type of mitochondrial physiology that may make them susceptible to physiological stressors. Identifying these children early in life before NDR occurs and providing treatment to protect mitochondrial physiology may protect children from experiencing NDR. The fact that parents also demonstrate mitochondrial respiration patterns similar to their children implies that this unique change in mitochondrial physiology may be a heritable factor (genetic or epigenetic), a result of shared environment, or both.
Collapse
Affiliation(s)
- Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ, United States
| | | | - Brianna A. Werner
- Creighton University School of Medicine Phoenix Regional Campus, Phoenix, AZ, United States
| | - Shannon Rose
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Adrienne C. Scheck
- Autism Discovery and Treatment Foundation, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
| |
Collapse
|
3
|
Nabi SU, Rehman MU, Arafah A, Taifa S, Khan IS, Khan A, Rashid S, Jan F, Wani HA, Ahmad SF. Treatment of Autism Spectrum Disorders by Mitochondrial-targeted Drug: Future of Neurological Diseases Therapeutics. Curr Neuropharmacol 2023; 21:1042-1064. [PMID: 36411568 PMCID: PMC10286588 DOI: 10.2174/1570159x21666221121095618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Autism is a neurodevelopmental disorder with a complex etiology that might involve environmental and genetic variables. Recently, some epidemiological studies conducted in various parts of the world have estimated a significant increase in the prevalence of autism, with 1 in every 59 children having some degree of autism. Since autism has been associated with other clinical abnormalities, there is every possibility that a sub-cellular component may be involved in the progression of autism. The organelle remains a focus based on mitochondria's functionality and metabolic role in cells. Furthermore, the mitochondrial genome is inherited maternally and has its DNA and organelle that remain actively involved during embryonic development; these characteristics have linked mitochondrial dysfunction to autism. Although rapid stride has been made in autism research, there are limited studies that have made particular emphasis on mitochondrial dysfunction and autism. Accumulating evidence from studies conducted at cellular and sub-cellular levels has indicated that mitochondrial dysfunction's role in autism is more than expected. The present review has attempted to describe the risk factors of autism, the role of mitochondria in the progression of the disease, oxidative damage as a trigger point to initiate mitochondrial damage, genetic determinants of the disease, possible pathogenic pathways and therapeutic regimen in vogue and the developmental stage. Furthermore, in the present review, an attempt has been made to include the novel therapeutic regimens under investigation at different clinical trial stages and their potential possibility to emerge as promising drugs against ASD.
Collapse
Affiliation(s)
- Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Taifa
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Iqra Shafi Khan
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Fatimah Jan
- Department of Pharmaceutical Sciences, CT University, Ludhiana, Ferozepur Road, Punjab, 142024, India
| | - Hilal Ahmad Wani
- Department of Biochemistry, Government Degree College Sumbal, Bandipora, J&K, India
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
5
|
Air Pollution and Maximum Temperature Are Associated with Neurodevelopmental Regressive Events in Autism Spectrum Disorder. J Pers Med 2022; 12:jpm12111809. [PMID: 36579525 PMCID: PMC9696106 DOI: 10.3390/jpm12111809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodevelopmental regression (NDR) is an enigmatic event associated with autism spectrum disorder (ASD) during which a child loses previously acquired skills and develops ASD symptoms. In some, a trigger which precedes the NDR event, such as a fever, can be identified, but in many cases no trigger is obvious. We hypothesize that air pollution (PM2.5) may trigger NDR, especially in those children without an identified trigger. Average daily PM2.5, ozone, precipitation and maximum temperature (Tmax) were derived from Environmental Protection Agency models and National Oceanic and Atmospheric Administration monitors based on zip-code information from 83 ASD participants during the six-weeks following the onset month of an NDR event and a reference period defined as one year before and one year after the event. Seasonally adjusted logistic regression (LR) and linear mixed models (LMM) compared cases (with a history of NDR) and matched controls (without a history of NDR). LR models found that the risk of NDR was related to higher PM2.5 during 3 to 6 weeks of the NDR event period, particularly in those without a trigger. Overall, both models converged on NDR being related to a higher PM2.5 and lower Tmax both during the NDR event period as well as the reference period, particularly in those without a known trigger. This temporal pattern suggests that environmental triggers, particularly PM2.5, could be related to NDR, especially in those without an identifiable trigger. Further studies to determine the underlying biological mechanism of this observation could help better understand NDR and provide opportunities to prevent NDR.
Collapse
|
6
|
Jensen AR, Lane AL, Werner BA, McLees SE, Fletcher TS, Frye RE. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol Diagn Ther 2022; 26:483-495. [PMID: 35759118 PMCID: PMC9411091 DOI: 10.1007/s40291-022-00600-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Autism spectrum disorder is an increasingly prevalent neurodevelopmental disorder in the world today, with an estimated 2% of the population being affected in the USA. A major complicating factor in diagnosing, treating, and understanding autism spectrum disorder is that defining the disorder is solely based on the observation of behavior. Thus, recent research has focused on identifying specific biological abnormalities in autism spectrum disorder that can provide clues to diagnosis and treatment. Biomarkers are an objective way to identify and measure biological abnormalities for diagnostic purposes as well as to measure changes resulting from treatment. This current opinion paper discusses the state of research of various biomarkers currently in development for autism spectrum disorder. The types of biomarkers identified include prenatal history, genetics, neurological including neuroimaging, neurophysiologic, and visual attention, metabolic including abnormalities in mitochondrial, folate, trans-methylation, and trans-sulfuration pathways, immune including autoantibodies and cytokine dysregulation, autonomic nervous system, and nutritional. Many of these biomarkers have promising preliminary evidence for prenatal and post-natal pre-symptomatic risk assessment, confirmation of diagnosis, subtyping, and treatment response. However, most biomarkers have not undergone validation studies and most studies do not investigate biomarkers with clinically relevant comparison groups. Although the field of biomarker research in autism spectrum disorder is promising, it appears that it is currently in the early stages of development.
Collapse
Affiliation(s)
- Amanda R Jensen
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Alison L Lane
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Brianna A Werner
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Sallie E McLees
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Tessa S Fletcher
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard E Frye
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.
| |
Collapse
|
7
|
Gill PS, Dweep H, Rose S, Wickramasinghe PJ, Vyas KK, McCullough S, Porter-Gill PA, Frye RE. Integrated microRNA–mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Autism. J Pers Med 2022; 12:jpm12060920. [PMID: 35743705 PMCID: PMC9225282 DOI: 10.3390/jpm12060920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, with mutations in hundreds of genes contributing to its risk. Herein, we studied lymphoblastoid cell lines (LCLs) from children diagnosed with autistic disorder (n = 10) and controls (n = 7) using RNA and miRNA sequencing profiles. The sequencing analysis identified 1700 genes and 102 miRNAs differentially expressed between the ASD and control LCLs (p ≤ 0.05). The top upregulated genes were GABRA4, AUTS2, and IL27, and the top upregulated miRNAs were hsa-miR-6813-3p, hsa-miR-221-5p, and hsa-miR-21-5p. The RT-qPCR analysis confirmed the sequencing results for randomly selected candidates: AUTS2, FMR1, PTEN, hsa-miR-15a-5p, hsa-miR-92a-3p, and hsa-miR-125b-5p. The functional enrichment analysis showed pathways involved in ASD control proliferation of neuronal cells, cell death of immune cells, epilepsy or neurodevelopmental disorders, WNT and PTEN signaling, apoptosis, and cancer. The integration of mRNA and miRNA sequencing profiles by miRWalk2.0 identified correlated changes in miRNAs and their targets’ expression. The integration analysis found significantly dysregulated miRNA–gene pairs in ASD. Overall, these findings suggest that mRNA and miRNA expression profiles in ASD are greatly altered in LCLs and reveal numerous miRNA–gene interactions that regulate critical pathways involved in the proliferation of neuronal cells, cell death of immune cells, and neuronal development.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
- Correspondence: ; Tel.: +1-501-364-2743
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA; (H.D.); (P.J.W.)
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | | | - Kanan K. Vyas
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Sandra McCullough
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Patricia A. Porter-Gill
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Richard E. Frye
- Barrow Neurological Institute at Phoenix Children′s Hospital, Phoenix, AZ 85016, USA;
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
8
|
Elesawy RO, El-Deeb OS, Eltokhy AK, Arakeep HM, Ali DA, Elkholy SS, Kabel AM. Postnatal baicalin ameliorates behavioral and neurochemical alterations in valproic acid-induced rodent model of autism: The possible implication of sirtuin-1/mitofusin-2/ Bcl-2 pathway. Biomed Pharmacother 2022; 150:112960. [PMID: 35447549 DOI: 10.1016/j.biopha.2022.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by pervasive impairments in social communication along with repetitive or stereotyped behaviors. Although its distinctive etiology isn`t completely understood, genetic and environmental risk factors were incriminated. Being a flavonoid of high biomedical value, baicalin was recently verified as an emerging medicinal herb with numerous pharmacological activities. The objective of this study was to investigate the feasible effects of baicalin on valproic acid (VPA)-induced autism regarding its potential mitochondrial modulatory, antioxidant, and antiapoptotic effects. The present study was performed using a rodent model of autism by exposing rat fetuses to VPA on the 12.5th day of gestation. Ten male Wistar rats that were born from control pregnant females were considered as group I (control group). Twenty male Wistar rats that were born from prenatal VPA- treated females were further divided into two groups: Group II (VPA- induced ASD) and group III (VPA + Baicalin). Postnatal baicalin promoted postnatal growth and maturation. In addition, it improved motor development and ameliorated repetitive behavior as well as social deficits in prenatally exposed VPA rats. Moreover, baicalin enhanced neuronal mitochondrial functions as evidenced by elevation of mitochondrial adenosine triphosphate (ATP) level and promotion of mitofusin-2 expression. Furthermore, baicalin elevated sirtuin-1 (SIRT1) level in VPA rats' brain tissues and restored the antioxidant defense mechanisms. Besides, it abrogated the neuronal histopathological changes in the brain tissues. Based on the data herein, baicalin may provide a promising pre-clinical therapeutic line in ASD as a mitochondrial function modulator, antioxidant and anti-apoptotic agent.
Collapse
Affiliation(s)
- Rasha O Elesawy
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Omnia S El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira K Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba M Arakeep
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina A Ali
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sanad S Elkholy
- Physiology Department, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
9
|
Shen L, Zhang H, Lin J, Gao Y, Chen M, Khan NU, Tang X, Hong Q, Feng C, Zhao Y, Cao X. A Combined Proteomics and Metabolomics Profiling to Investigate the Genetic Heterogeneity of Autistic Children. Mol Neurobiol 2022; 59:3529-3545. [PMID: 35348996 DOI: 10.1007/s12035-022-02801-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) has become one of the most common neurological developmental disorders in children. However, the study of ASD diagnostic markers faces significant challenges due to the existence of heterogeneity. In this study, genetic testing was performed on children who were clinically diagnosed with ASD. Children with ASD susceptibility genes and healthy controls were studied. The proteomics of plasma and peripheral blood mononuclear cells (PBMCs) as well as plasma metabolomics were carried out. The results showed that although there was genetic heterogeneity in children with ASD, the differentially expressed proteins (DEPs) in plasma, peripheral blood mononuclear cells, and differential metabolites in plasma could still effectively distinguish autistic children from controls. The mechanism associated with them focuses on several common and previously reported mechanisms of ASD. The biomarkers for ASD diagnosis could be found by taking differentially expressed proteins and differential metabolites into consideration. Integrating omics data, glycerophospholipid metabolism and N-glycan biosynthesis might play a critical role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
10
|
Werner BA, McCarty PJ, Lane AL, Singh I, Karim MA, Rose S, Frye RE. Time dependent changes in the bioenergetics of peripheral blood mononuclear cells: processing time, collection tubes and cryopreservation effects. Am J Transl Res 2022; 14:1628-1639. [PMID: 35422946 PMCID: PMC8991115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Bioenergetic measurements in peripheral blood mononuclear cells (PBMCs) using high-throughput respirometry is a promising minimally invasive approach to studying mitochondrial function in humans. However, optimal methods for collecting PBMCs are not well studied. METHODS Bioenergetics and viability were measured across processing delays, tube type and cryopreservation. RESULTS Storage of collection tubes on dry ice resulted in unrecoverable samples and using the Cell Preparation Tube (CPTTM) significantly reduced viability. Thus, storage in Sodium Citrate (NaC) and ethylenediaminetetraacetic acid (EDTA) tubes were studied in detail. Cell viability decreased by 0.5% for each hour the samples remained on wet ice prior to processing while cryopreservation decreased viability by 9.6% with viability remaining stable for about one month in liquid nitrogen. Adenosine triphosphate linked respiration (ALR) and proton-leak respiration (PLR) changed minimally while maximal respiratory capacity (MRC) and reserve capacity (RC) decreased markedly with collection tubes stored on wet ice over 24 hrs. Changes in respiratory parameters were more modest over the first 8 hours. Manipulations to replace media did not attenuate changes in respiratory parameters. Cryopreservation decreased ALR, MRC and RC by 17.20, 95.30 and 54.92 pmol/min, respectively and increased PLR by 2.65 pmol/min. PLR, MRC and RC changed moderately during the first month in liquid nitrogen for freshly frozen PBMCs. CONCLUSIONS Our results suggest that bioenergetics in PBMCs vary based on the processing time from specimen collection and preservation method. Changes in bioenergetics can be minimized by processing samples with a minimal time delay. Changes in viability are minimal and may not correspond to changes in bioenergetics.
Collapse
Affiliation(s)
- Brianna A Werner
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Patrick J McCarty
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Alison L Lane
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Indrapal Singh
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Mohammad A Karim
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| | - Shannon Rose
- Arkansas Children’s Research InstituteLittle Rock, AR 72202, USA
| | - Richard E Frye
- Section on Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute at Phoenix Children’s HospitalPhoenix, AZ, USA
- Department of Child Health, University of Arizona College of Medicine - PhoenixPhoenix, AZ 85016, USA
| |
Collapse
|
11
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
12
|
Frye RE, Lionnard L, Singh I, Karim MA, Chajra H, Frechet M, Kissa K, Racine V, Ammanamanchi A, McCarty PJ, Delhey L, Tippett M, Rose S, Aouacheria A. Mitochondrial morphology is associated with respiratory chain uncoupling in autism spectrum disorder. Transl Psychiatry 2021; 11:527. [PMID: 34645790 PMCID: PMC8514530 DOI: 10.1038/s41398-021-01647-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is associated with unique changes in mitochondrial metabolism, including elevated respiration rates and morphological alterations. We examined electron transport chain (ETC) complex activity in fibroblasts derived from 18 children with ASD as well as mitochondrial morphology measurements in fibroblasts derived from the ASD participants and four typically developing controls. In ASD participants, symptoms severity was measured by the Social Responsiveness Scale and Aberrant Behavior Checklist. Mixed-model regression demonstrated that alterations in mitochondrial morphology were associated with both ETC Complex I+III and IV activity as well as the difference between ETC Complex I+III and IV activity. The subgroup of ASD participants with relative elevation in Complex IV activity demonstrated more typical mitochondrial morphology and milder ASD related symptoms. This study is limited by sample size given the invasive nature of obtaining fibroblasts from children. Furthermore, since mitochondrial function is heterogenous across tissues, the result may be specific to fibroblast respiration. Previous studies have separately described elevated ETC Complex IV activity and changes in mitochondrial morphology in cells derived from children with ASD but this is the first study to link these two findings in mitochondrial metabolism. The association between a difference in ETC complex I+III and IV activity and normal morphology suggests that mitochondrial in individuals with ASD may require ETC uncoupling to function optimally. Further studies should assess the molecular mechanisms behind these unique metabolic changes.Trial registration: Protocols used in this study were registered in clinicaltrials.gov as NCT02000284 and NCT02003170.
Collapse
Affiliation(s)
- Richard E Frye
- Phoenix Children's Hospital, Phoenix, AZ, USA.
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| | - Loïc Lionnard
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 CNRS, UM, IRD, EPHE, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier cedex 05, France
| | - Indrapal Singh
- Phoenix Children's Hospital, Phoenix, AZ, USA
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Mohammad A Karim
- Phoenix Children's Hospital, Phoenix, AZ, USA
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Hanane Chajra
- Clariant Active ingredients, 195 Route d'Espagne, 31036, Toulouse Cedex 1, France
| | - Mathilde Frechet
- Clariant Active ingredients, 195 Route d'Espagne, 31036, Toulouse Cedex 1, France
| | - Karima Kissa
- LPHI, CNRS, INSERM, Emergence of Haematopoietic Stem Cells and Cancer, Univ Montpellier, Montpellier, France
| | - Victor Racine
- QuantaCell SAS, 2 allée du Doyen Georges Brus, 33600, Pessac, France
| | - Amrit Ammanamanchi
- Phoenix Children's Hospital, Phoenix, AZ, USA
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Patrick John McCarty
- Phoenix Children's Hospital, Phoenix, AZ, USA
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Leanna Delhey
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Marie Tippett
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Abdel Aouacheria
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 CNRS, UM, IRD, EPHE, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier cedex 05, France
| |
Collapse
|
13
|
Farrow E, Chiocchetti AG, Rogers JC, Pauli R, Raschle NM, Gonzalez-Madruga K, Smaragdi A, Martinelli A, Kohls G, Stadler C, Konrad K, Fairchild G, Freitag CM, Chechlacz M, De Brito SA. SLC25A24 gene methylation and gray matter volume in females with and without conduct disorder: an exploratory epigenetic neuroimaging study. Transl Psychiatry 2021; 11:492. [PMID: 34561420 PMCID: PMC8463588 DOI: 10.1038/s41398-021-01609-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
Conduct disorder (CD), a psychiatric disorder characterized by a repetitive pattern of antisocial behaviors, results from a complex interplay between genetic and environmental factors. The clinical presentation of CD varies both according to the individual's sex and level of callous-unemotional (CU) traits, but it remains unclear how genetic and environmental factors interact at the molecular level to produce these differences. Emerging evidence in males implicates methylation of genes associated with socio-affective processes. Here, we combined an epigenome-wide association study with structural neuroimaging in 51 females with CD and 59 typically developing (TD) females to examine DNA methylation in relation to CD, CU traits, and gray matter volume (GMV). We demonstrate an inverse pattern of correlation between CU traits and methylation of a chromosome 1 region in CD females (positive) as compared to TD females (negative). The identified region spans exon 1 of the SLC25A24 gene, central to energy metabolism due to its role in mitochondrial function. Increased SLC25A24 methylation was also related to lower GMV in multiple brain regions in the overall cohort. These included the superior frontal gyrus, prefrontal cortex, and supramarginal gyrus, secondary visual cortex and ventral posterior cingulate cortex, which are regions that have previously been implicated in CD and CU traits. While our findings are preliminary and need to be replicated in larger samples, they provide novel evidence that CU traits in females are associated with methylation levels in a fundamentally different way in CD and TD, which in turn may relate to observable variations in GMV across the brain.
Collapse
Affiliation(s)
- Elizabeth Farrow
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Andreas G. Chiocchetti
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jack C. Rogers
- grid.6572.60000 0004 1936 7486School of Psychology and Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Ruth Pauli
- grid.6572.60000 0004 1936 7486School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Nora M. Raschle
- grid.7400.30000 0004 1937 0650Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | | | | | - Anne Martinelli
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gregor Kohls
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Aachen, Germany
| | | | - Kerstin Konrad
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Aachen, Germany
| | - Graeme Fairchild
- grid.7340.00000 0001 2162 1699Department of Psychology, University of Bath, Bath, UK
| | - Christine M. Freitag
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Magdalena Chechlacz
- grid.6572.60000 0004 1936 7486School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Stephane A. De Brito
- grid.6572.60000 0004 1936 7486School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
14
|
An mtDNA mutant mouse demonstrates that mitochondrial deficiency can result in autism endophenotypes. Proc Natl Acad Sci U S A 2021; 118:2021429118. [PMID: 33536343 PMCID: PMC8017921 DOI: 10.1073/pnas.2021429118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) have increasingly been associated with mitochondrial dysfunction, corroborated by mitochondrial DNA (mtDNA) germline and somatic variants being found in ASD patients. If mitochondrial defects can generate ASD, then specific mtDNA mutations should induce ASD endophenotypes in mice. We tested this prediction by introduction of an mtDNA ND6 gene missense mutation (ND6P25L) into the mouse germline and found ASD endophenotypes. The ND6P25L mice exhibit impaired social interaction, compulsive behavior, and increased anxiety. They have reduced electroencephalographic delta and theta wave power, increased predilection to seizures, but without diminution of hippocampal interneurons. These endophenotypes correlate with impaired cortical and hippocampal mitochondrial respiration and increased reactive oxygen species production. Thus, mitochondrial defects can be sufficient to produce ASD phenotypes. Autism spectrum disorders (ASDs) are characterized by a deficit in social communication, pathologic repetitive behaviors, restricted interests, and electroencephalogram (EEG) aberrations. While exhaustive analysis of nuclear DNA (nDNA) variation has revealed hundreds of copy number variants (CNVs) and loss-of-function (LOF) mutations, no unifying hypothesis as to the pathophysiology of ASD has yet emerged. Based on biochemical and physiological analyses, it has been hypothesized that ASD may be the result of a systemic mitochondrial deficiency with brain-specific manifestations. This proposal has been supported by recent mitochondrial DNA (mtDNA) analyses identifying both germline and somatic mtDNA variants in ASD. If mitochondrial defects do predispose to ASD, then mice with certain mtDNA mutations should present with autism endophenotypes. To test this prediction, we examined a mouse strain harboring an mtDNA ND6 gene missense mutation (P25L). This mouse manifests impaired social interactions, increased repetitive behaviors and anxiety, EEG alterations, and a decreased seizure threshold, in the absence of reduced hippocampal interneuron numbers. EEG aberrations were most pronounced in the cortex followed by the hippocampus. Aberrations in mitochondrial respiratory function and reactive oxygen species (ROS) levels were also most pronounced in the cortex followed by the hippocampus, but absent in the olfactory bulb. These data demonstrate that mild systemic mitochondrial defects can result in ASD without apparent neuroanatomical defects and that systemic mitochondrial mutations can cause tissue-specific brain defects accompanied by regional neurophysiological alterations.
Collapse
|
15
|
Frye RE, Cakir J, Rose S, Delhey L, Bennuri SC, Tippett M, Melnyk S, James SJ, Palmer RF, Austin C, Curtin P, Arora M. Prenatal air pollution influences neurodevelopment and behavior in autism spectrum disorder by modulating mitochondrial physiology. Mol Psychiatry 2021; 26:1561-1577. [PMID: 32963337 PMCID: PMC8159748 DOI: 10.1038/s41380-020-00885-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/03/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
We investigate the role of the mitochondrion, an organelle highly sensitive to environmental agents, in the influence of prenatal air pollution exposure on neurodevelopment and behavior in 96 children with autism spectrum disorder (ASD) [45 with neurodevelopmental regression (NDR); 76% Male; mean (SD) age 10 y 9 m (3 y 9 m)]. Mitochondrial function was assessed using the Seahorse XFe96 in fresh peripheral blood mononuclear cells. Second and third trimester average and maximal daily exposure to fine air particulate matter of diameter ≤2.5 µm (PM2.5) was obtained from the Environmental Protection Agency's Air Quality System. Neurodevelopment was measured using the Vineland Adaptive Behavior Scale 2nd edition and behavior was assessed using the Aberrant Behavior Checklist and Social Responsiveness Scale. Prenatal PM2.5 exposure influenced mitochondrial respiration during childhood, but this relationship was different for those with (r = 0.25-0.40) and without (r = -0.07 to -0.19) NDR. Mediation analysis found that mitochondrial respiration linked to energy production accounted for 25% (SD = 2%) and 10% (SD = 2%) of the effect of average prenatal PM2.5 exposure on neurodevelopment and behavioral symptoms, respectively. Structural equation models estimated that PM2.5 and mitochondrial respiration accounted for 34% (SD = 4%) and 36% (SD = 3%) of the effect on neurodevelopment, respectively, and that behavior was indirectly influenced by mitochondrial respiration through neurodevelopment but directly influenced by prenatal PM2.5. Our results suggest that prenatal exposure to PM2.5 disrupts neurodevelopment and behavior through complex mechanisms, including long-term changes in mitochondrial respiration and that patterns of early development need to be considered when studying the influence of environmental agents on neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Richard E Frye
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.
| | - Janet Cakir
- North Carolina State University, Raleigh, NC, USA
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Leanna Delhey
- Arkansas Children's Research Institute, Little Rock, AR, USA
- College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sirish C Bennuri
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marie Tippett
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stepan Melnyk
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - S Jill James
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P, Arora M. Mitochondria May Mediate Prenatal Environmental Influences in Autism Spectrum Disorder. J Pers Med 2021; 11:218. [PMID: 33803789 PMCID: PMC8003154 DOI: 10.3390/jpm11030218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
We propose that the mitochondrion, an essential cellular organelle, mediates the long-term prenatal environmental effects of disease in autism spectrum disorder (ASD). Many prenatal environmental factors which increase the risk of developing ASD influence mitochondria physiology, including toxicant exposures, immune activation, and nutritional factors. Unique types of mitochondrial dysfunction have been associated with ASD and recent studies have linked prenatal environmental exposures to long-term changes in mitochondrial physiology in children with ASD. A better understanding of the role of the mitochondria in the etiology of ASD can lead to targeted therapeutics and strategies to potentially prevent the development of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Janet Cakir
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
| | - Raymond F. Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| |
Collapse
|
17
|
Gonzalez S. The Role of Mitonuclear Incompatibility in Bipolar Disorder Susceptibility and Resilience Against Environmental Stressors. Front Genet 2021; 12:636294. [PMID: 33815470 PMCID: PMC8010675 DOI: 10.3389/fgene.2021.636294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
It has been postulated that mitochondrial dysfunction has a significant role in the underlying pathophysiology of bipolar disorder (BD). Mitochondrial functioning plays an important role in regulating synaptic transmission, brain function, and cognition. Neuronal activity is energy dependent and neurons are particularly sensitive to changes in bioenergetic fluctuations, suggesting that mitochondria regulate fundamental aspects of brain function. Vigorous evidence supports the role of mitochondrial dysfunction in the etiology of BD, including dysregulated oxidative phosphorylation, general decrease of energy, altered brain bioenergetics, co-morbidity with mitochondrial disorders, and association with genetic variants in mitochondrial DNA (mtDNA) or nuclear-encoded mitochondrial genes. Despite these advances, the underlying etiology of mitochondrial dysfunction in BD is unclear. A plausible evolutionary explanation is that mitochondrial-nuclear (mitonuclear) incompatibility leads to a desynchronization of machinery required for efficient electron transport and cellular energy production. Approximately 1,200 genes, encoded from both nuclear and mitochondrial genomes, are essential for mitochondrial function. Studies suggest that mitochondrial and nuclear genomes co-evolve, and the coordinated expression of these interacting gene products are essential for optimal organism function. Incompatibilities between mtDNA and nuclear-encoded mitochondrial genes results in inefficiency in electron flow down the respiratory chain, differential oxidative phosphorylation efficiency, increased release of free radicals, altered intracellular Ca2+ signaling, and reduction of catalytic sites and ATP production. This review explores the role of mitonuclear incompatibility in BD susceptibility and resilience against environmental stressors.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Department of Psychiatry and Behavioral Health, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
18
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
19
|
Wang YM, Qiu MY, Liu Q, Tang H, Gu HF. Critical role of dysfunctional mitochondria and defective mitophagy in autism spectrum disorders. Brain Res Bull 2021; 168:138-145. [PMID: 33400955 DOI: 10.1016/j.brainresbull.2020.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of complex neurodevelopmental disorders, including autistic disorder, Asperger's syndrome, pervasive developmental disorder and childhood disintegrative disorder. Mitochondria not only provide neurons with energy in the form of ATP to sustain neuron growth, proliferation and neurodevelopment, but also regulate neuron apoptosis, intracellular calcium ion (Ca2+) homeostasis, and reactive oxygen species (ROS) clearance. Due to their postmitotic state and high energy-demanded feature, neurons are particularly prone to mitophagy and mitochondrial disfunction. Mitophagy, a selective autophagy, is critical for sustaining mitochondrial turnover and quality control via eliminating unwanted and dysfunctional mitochondria in neurons. Dysfunctional mitochondria and dysregulated mitophagy have been closely associated with the onset of ASDs. In this review, we summarize the mechanism of mitophagy and its role in neurons, and the consequence of mitophagy dysfunction in ASDs. Deeper appreciation of the role of mitophagy in ASDs pathology is required for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Yuan-Mei Wang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Ming-Yue Qiu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Qing Liu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Huang Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China
| | - Hong-Feng Gu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment & Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, People's Republic of China; Lhasa Guangsheng Hospital, Lhasa, People's Republic of China.
| |
Collapse
|
20
|
Frye RE. Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Semin Pediatr Neurol 2020; 35:100829. [PMID: 32892956 DOI: 10.1016/j.spen.2020.100829] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several lines of evidence implicate mitochondria in the pathophysiology of autism spectrum disorder (ASD). In this review, we outline some of the evidence supporting this notion, as well as discuss novel abnormalities in mitochondrial function that appear to be related to ASD, and treatments that both target mitochondria and have evidence of usefulness in the treatment of ASD in clinical trials. A suspicion of the mitochondrion's involvement in ASD can be traced back to 1985 when lactic acidosis was noted in a subset of children with ASD. A large population-based study in 2007 confirmed this notion and found that a subset of children with ASD (∼4%) could be diagnosed with a definite mitochondrial disease. Further studies suggested that children with ASD and mitochondrial disease may have certain characteristics such as fatigability, gastrointestinal disorders, unusual types of neurodevelopmental regression, seizures/epilepsy, and motor delay. Further research examining biomarkers of mitochondrial dysfunction and electron transport chain activity suggest that abnormalities of mitochondrial function could affect a much higher number of children with ASD, perhaps up to 80%. Recent research has identified a type of dysfunction of mitochondria in which the activity of the electron transport chain is significantly increased. This novel type of mitochondrial dysfunction may be associated with environmental exposures and neurodevelopmental regression. Several treatments that target mitochondria appear to have evidence for use in children with ASD, including cofactors such as L-Carnitine and the ketogenic diet. Although the understanding of the involvement of mitochondria in ASD is evolving, the mitochondrion is clearly a novel molecular target which can be helpful in understanding the etiology of ASD and treatments that may improve function of children with ASD.
Collapse
Affiliation(s)
- Richard E Frye
- Division of Neurology, Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ; Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ.
| |
Collapse
|
21
|
Frye RE, Cakir J, Rose S, Delhey L, Bennuri SC, Tippett M, Palmer RF, Austin C, Curtin P, Arora M. Early life metal exposure dysregulates cellular bioenergetics in children with regressive autism spectrum disorder. Transl Psychiatry 2020; 10:223. [PMID: 32636364 PMCID: PMC7341836 DOI: 10.1038/s41398-020-00905-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Neurodevelopmental regression (NDR) is a subtype of autism spectrum disorder (ASD) that manifests as loss of previously acquired developmental milestones. Early life dysregulation of nutritional metals and/or exposure to toxic metals have been associated with ASD, but the underlying biological mechanisms by which metals influence neurodevelopment remain unclear. We hypothesize that metals influences neurodevelopment through dysregulation of bioenergetics. Prenatal and early postnatal metal exposures were measured using validated tooth-matrix biomarkers in 27 ASD cases (13 with NDR) and 7 typically-developing (TD) controls. Mitochondrial respiration and glycolysis were measured in peripheral blood mononuclear cells using the Seahorse XF96. Children with ASD demonstrated lower prenatal and postnatal Copper (Cu) and prenatal Nickel concentrations and Copper-to-Zinc (Cu/Zn) ratio as compared with TD children. Children with ASD and NDR showed greater metal-related disruption of cellular bioenergetics than children with ASD without NDR. For children with ASD and NDR mitochondrial respiration decreased as prenatal Manganese concentration increased and increased as prenatal Zinc concentration increased; glycolysis decreased with increased exposure to prenatal Manganese and Lead and postnatal Manganese. For children with ASD without a history of NDR, glycolysis increased with increased postnatal exposure to Tin. Language and communication scores in children with ASD were positively related to prenatal Cu exposure and Cu/Zn ratio. This study suggests that prenatal nutritional metals may be important for neurodevelopment in children with ASD, and that exposure to toxic metals and differences in nutritional metal exposures is associated with dysregulation of cellular bioenergetics, particularly in the NDR subtype of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- grid.427785.b0000 0001 0664 3531Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ USA ,grid.134563.60000 0001 2168 186XUniversity of Arizona College of Medicine – Phoenix, Phoenix, AZ USA
| | - Janet Cakir
- grid.40803.3f0000 0001 2173 6074North Carolina State University, Raleigh, NC USA
| | - Shannon Rose
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Leanna Delhey
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Sirish C. Bennuri
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Marie Tippett
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Raymond F. Palmer
- grid.267309.90000 0001 0629 5880Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX USA
| | - Christine Austin
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Paul Curtin
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Manish Arora
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
22
|
Pacheva I, Ivanov I. Targeted Biomedical Treatment for Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4430-4453. [PMID: 31801452 DOI: 10.2174/1381612825666191205091312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND A diagnosis of autism spectrum disorders (ASD) represents presentations with impairment in communication and behaviour that vary considerably in their clinical manifestations and etiology as well as in their likely pathophysiology. A growing body of data indicates that the deleterious effect of oxidative stress, mitochondrial dysfunction, immune dysregulation and neuroinflammation, as well as their interconnections are important aspects of the pathophysiology of ASD. Glutathione deficiency decreases the mitochondrial protection against oxidants and tumor necrosis factor (TNF)-α; immune dysregulation and inflammation inhibit mitochondrial function through TNF-α; autoantibodies against the folate receptors underpin cerebral folate deficiency, resulting in disturbed methylation, and mitochondrial dysfunction. Such pathophysiological processes can arise from environmental and epigenetic factors as well as their combined interactions, such as environmental toxicant exposures in individuals with (epi)genetically impaired detoxification. The emerging evidence on biochemical alterations in ASD is forming the basis for treatments aimed to target its biological underpinnings, which is of some importance, given the uncertain and slow effects of the various educational interventions most commonly used. METHODS Literature-based review of the biomedical treatment options for ASD that are derived from established pathophysiological processes. RESULTS Most proposed biomedical treatments show significant clinical utility only in ASD subgroups, with specified pre-treatment biomarkers that are ameliorated by the specified treatment. For example, folinic acid supplementation has positive effects in ASD patients with identified folate receptor autoantibodies, whilst the clinical utility of methylcobalamine is apparent in ASD patients with impaired methylation capacity. Mitochondrial modulating cofactors should be considered when mitochondrial dysfunction is evident, although further research is required to identify the most appropriate single or combined treatment. Multivitamins/multiminerals formulas, as well as biotin, seem appropriate following the identification of metabolic abnormalities, with doses tapered to individual requirements. A promising area, requiring further investigations, is the utilization of antipurinergic therapies, such as low dose suramin. CONCLUSION The assessment and identification of relevant physiological alterations and targeted intervention are more likely to produce positive treatment outcomes. As such, current evidence indicates the utility of an approach based on personalized and evidence-based medicine, rather than treatment targeted to all that may not always be beneficial (primum non nocere).
Collapse
Affiliation(s)
- Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| |
Collapse
|
23
|
Singh K, Singh IN, Diggins E, Connors SL, Karim MA, Lee D, Zimmerman AW, Frye RE. Developmental regression and mitochondrial function in children with autism. Ann Clin Transl Neurol 2020; 7:683-694. [PMID: 32343046 PMCID: PMC7261756 DOI: 10.1002/acn3.51034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Developmental regression (DR) occurs in about one-third of children with Autism Spectrum Disorder (ASD) yet it is poorly understood. Current evidence suggests that mitochondrial function in not normal in many children with ASD. However, the relationship between mitochondrial function and DR has not been well-studied in ASD. METHODS This cross-sectional study of 32 children, 2 to 8 years old with ASD, with (n = 11) and without (n = 12) DR, and non-ASD controls (n = 9) compared mitochondrial respiration and mtDNA damage and copy number between groups and their relation to standardized measures of ASD severity. RESULTS Individuals with ASD demonstrated lower ND1, ND4, and CYTB copy number (Ps < 0.01) as compared to controls. Children with ASD and DR had higher maximal oxygen consumption rate (Ps < 0.02), maximal respiratory capacity (P < 0.05), and reserve capacity (P = 0.01) than those with ASD without DR. Coupling Efficiency and Maximal Respiratory Capacity were associated with disruptive behaviors but these relationships were different for those with and without DR. Higher ND1 copy number was associated with better behavior. CONCLUSIONS This study suggests that individuals with ASD and DR may represent a unique metabolic endophenotype with distinct abnormalities in respiratory function that may put their mitochondria in a state of vulnerability. This may allow physiological stress to trigger mitochondrial decompensation as is seen clinically as DR. Since mitochondrial function was found to be related to ASD symptoms, the mitochondria could be a potential target for novel therapeutics. Additionally, identifying those with vulnerable mitochondrial before DR could result in prevention of ASD.
Collapse
Affiliation(s)
- Kanwaljit Singh
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUnited States
| | - Indrapal N. Singh
- Division of NeurologySection on Neurodevelopmental DisordersBarrow Neurologic Institute at Phoenix Children’s HospitalPhoenixArizonaUnited States
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUnited States
| | - Eileen Diggins
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUnited States
| | - Susan L. Connors
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUnited States
| | - Mohammad A. Karim
- Division of NeurologySection on Neurodevelopmental DisordersBarrow Neurologic Institute at Phoenix Children’s HospitalPhoenixArizonaUnited States
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUnited States
| | - David Lee
- Division of NeurologySection on Neurodevelopmental DisordersBarrow Neurologic Institute at Phoenix Children’s HospitalPhoenixArizonaUnited States
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUnited States
| | - Andrew W. Zimmerman
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUnited States
| | - Richard E. Frye
- Division of NeurologySection on Neurodevelopmental DisordersBarrow Neurologic Institute at Phoenix Children’s HospitalPhoenixArizonaUnited States
- Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUnited States
| |
Collapse
|
24
|
Malaguarnera M, Khan H, Cauli O. Resveratrol in Autism Spectrum Disorders: Behavioral and Molecular Effects. Antioxidants (Basel) 2020; 9:E188. [PMID: 32106489 PMCID: PMC7139867 DOI: 10.3390/antiox9030188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (RSV) is a polyphenolic stillbenoid with significant anti-oxidative and anti-inflammatory properties recently tested in animal models of several neurological diseases. Altered immune alteration and oxidative stress have also been found in patients with autism spectrum disorders (ASD), and these alterations could add to the pathophysiology associated with ASD. We reviewed the current evidence about the effects of RSV administration in animal models and in patients with ASD. RSV administration improves the core-symptoms (social impairment and stereotyped activity) in animal models and it also displays beneficial effects in other behavioral abnormalities such as hyperactivity, anxiety and cognitive function. The molecular mechanisms by which RSV restores or improves behavioral abnormalities in animal models encompass both normalization of central and peripheral immune alteration and oxidative stress markers and new molecular mechanisms such as expression of cortical gamma-amino butyric acid neurons, certain type of miRNAs that regulate spine growth. One randomized, placebo-controlled clinical trial (RCT) suggested that RSV add-on risperidone therapy improves comorbid hyperactivity/non-compliance, whereas no effects where seen in core symptoms of ASD No RCTs about the effect of RSV as monotherapy have been performed and the results from preclinical studies encourage its feasibility. Further clinical trials should also identify those ASD patients with immune alterations and/or with increased oxidative stress markers that would likely benefit from RSV administration.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Research Center “The Great Senescence”, University of Catania, 95100 Catania, Italy;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Marden 23200, Pakistan;
| | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
25
|
Strunecka A, Strunecky O. Chronic Fluoride Exposure and the Risk of Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3431. [PMID: 31527457 PMCID: PMC6765894 DOI: 10.3390/ijerph16183431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
Abstract
The continuous rise of autism spectrum disorder (ASD) prevalent in the past few decades is causing an increase in public health and socioeconomic concern. A consensus suggests the involvement of both genetic and environmental factors in the ASD etiopathogenesis. Fluoride (F) is rarely recognized among the environmental risk factors of ASD, since the neurotoxic effects of F are not generally accepted. Our review aims to provide evidence of F neurotoxicity. We assess the risk of chronic F exposure in the ASD etiopathology and investigate the role of metabolic and mitochondrial dysfunction, oxidative stress and inflammation, immunoexcitotoxicity, and decreased melatonin levels. These symptoms have been observed both after chronic F exposure as well as in ASD. Moreover, we show that F in synergistic interactions with aluminum's free metal cation (Al3+) can reinforce the pathological symptoms of ASD. This reinforcement takes place at concentrations several times lower than when acting alone. A high ASD prevalence has been reported from countries with water fluoridation as well as from endemic fluorosis areas. We suggest focusing the ASD prevention on the reduction of the F and Al3+ burdens from daily life.
Collapse
Affiliation(s)
- Anna Strunecka
- The Institute of Technology and Business, Okružní 517/10, 370 01 České Budějovice, Czech Republic.
| | - Otakar Strunecky
- The Institute of Technology and Business, Okružní 517/10, 370 01 České Budějovice, Czech Republic.
| |
Collapse
|
26
|
Harville T, Rhodes-Clark B, Bennuri SC, Delhey L, Slattery J, Tippett M, Wynne R, Rose S, Kahler S, Frye RE. Inheritance of HLA-Cw7 Associated With Autism Spectrum Disorder (ASD). Front Psychiatry 2019; 10:612. [PMID: 31572230 PMCID: PMC6749146 DOI: 10.3389/fpsyt.2019.00612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined disorder that is now thought to affect approximately 1 in 69 children in the United States. In most cases, the etiology is unknown, but several studies point to the interaction of genetic predisposition with environmental factors. The immune system is thought to have a causative role in ASD, and specific studies have implicated T lymphocytes, monocytes, natural killer (NK) cells, and certain cytokines. The human leukocyte antigen (HLA) system is involved in the underlying process for shaping an individual's immune system, and specific HLA alleles are associated with specific diseases as risk factors. In this study, we determine whether a specific HLA allele was associated with ASD in a large cohort of patients with ASD. Identifying such an association could help in the identification of immune system components which may have a causative role in specific cohorts of patients with ASD who share similar specific clinical features. Specimens from 143 patients with ASD were analyzed with respect to race and ethnicity. Overall, HLA-Cw7 was present in a much greater frequency than expected in individuals with ASD as compared to the general population. Further, the cohort of patients who express HLA-Cw7 shares specific immune system/inflammatory clinical features including being more likely to have allergies, food intolerances, and chronic sinusitis as compared to those with ASD who did not express HLA-Cw7. HLA-Cw7 has a role in stimulating NK cells. Thus, this finding may indicate that chronic over-activation of NK cells may have a role in the manifestation of ASD in a cohort of patients with increased immune system/inflammatory features.
Collapse
Affiliation(s)
- Terry Harville
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Bobbie Rhodes-Clark
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sirish C Bennuri
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Leanna Delhey
- School of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - John Slattery
- BioRosa Technologies Inc, San Francisco, CA, United States
| | - Marie Tippett
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Rebecca Wynne
- National Center for Toxicological Research, Jefferson, AR, United States
| | - Shannon Rose
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Stephen Kahler
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Richard E Frye
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|