1
|
Bhattacharya A, Parlanti P, Cavallo L, Farrow E, Spivey T, Renieri A, Mari F, Manzini MC. A novel framework for functional annotation of variants of uncertain significance in ID/ASD risk gene CC2D1A. Hum Mol Genet 2024; 33:1229-1240. [PMID: 38652285 DOI: 10.1093/hmg/ddae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous with hundreds of identified risk genes, most affecting only a few patients. Novel missense variants in these genes are being discovered as clinical exome sequencing is now routinely integrated into diagnosis, yet most of them are annotated as variants of uncertain significance (VUS). VUSs are a major roadblock in using patient genetics to inform clinical action. We developed a framework to characterize VUSs in Coiled-coil and C2 domain containing 1A (CC2D1A), a gene causing autosomal recessive ID with comorbid ASD in 40% of cases. We analyzed seven VUSs (p.Pro319Leu, p.Ser327Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, p.Arg886His and p.Glu910Lys) from four cases of individuals with ID and ASD. Variants were cloned and overexpressed in HEK293 individually and in their respective heterozygous combination. CC2D1A is a signaling scaffold that positively regulates PKA-CREB signaling by repressing phosphodiesterase 4D (PDE4D) to prevent cAMP degradation. After testing multiple parameters including direct interaction between PDE4D and CC2D1A, cAMP levels and CREB activation, we found that the most sensitive readout was CREB transcriptional activity using a luciferase assay. Compared to WT CC2D1A, five VUSs (p.Pro319Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, and p.Arg886His) led to significantly blunted response to forskolin induced CREB activation. This luciferase assay approach can be scaled up to annotate ~150 CC2D1A VUSs that are currently listed in ClinVar. Since CREB activation is a common denominator for multiple ASD/ID genes, our paradigm can also be adapted for their VUSs.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Paola Parlanti
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Luca Cavallo
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Edward Farrow
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, United States
| | - Tyler Spivey
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, United States
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - M Chiara Manzini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| |
Collapse
|
2
|
Esposito D, Cruciani G, Zaccaro L, Di Carlo E, Spitoni GF, Manti F, Carducci C, Fiori E, Leuzzi V, Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci 2024; 14:481. [PMID: 38790459 PMCID: PMC11119126 DOI: 10.3390/brainsci14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperserotonemia is one of the most studied endophenotypes in autism spectrum disorder (ASD), but there are still no unequivocal results about its causes or biological and behavioral outcomes. This systematic review summarizes the studies investigating the relationship between blood serotonin (5-HT) levels and ASD, comparing diagnostic tools, analytical methods, and clinical outcomes. A literature search on peripheral 5-HT levels and ASD was conducted. In total, 1104 publications were screened, of which 113 entered the present systematic review. Of these, 59 articles reported hyperserotonemia in subjects with ASD, and 26 presented correlations between 5-HT levels and ASD-core clinical outcomes. The 5-HT levels are increased in about half, and correlations between hyperserotonemia and clinical outcomes are detected in a quarter of the studies. The present research highlights a large amount of heterogeneity in this field, ranging from the characterization of ASD and control groups to diagnostic and clinical assessments, from blood sampling procedures to analytical methods, allowing us to delineate critical topics for future studies.
Collapse
Affiliation(s)
- Dario Esposito
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Gianluca Cruciani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
| | - Laura Zaccaro
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Elena Fiori
- Rome Technopole Foundation, P.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
- Centro “Daniel Bovet”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
3
|
Matta J, Dobrino D, Yeboah D, Howard S, EL-Manzalawy Y, Obafemi-Ajayi T. Connecting phenotype to genotype: PheWAS-inspired analysis of autism spectrum disorder. Front Hum Neurosci 2022; 16:960991. [PMID: 36310845 PMCID: PMC9605200 DOI: 10.3389/fnhum.2022.960991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/14/2022] [Indexed: 04/13/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is extremely heterogeneous clinically and genetically. There is a pressing need for a better understanding of the heterogeneity of ASD based on scientifically rigorous approaches centered on systematic evaluation of the clinical and research utility of both phenotype and genotype markers. This paper presents a holistic PheWAS-inspired method to identify meaningful associations between ASD phenotypes and genotypes. We generate two types of phenotype-phenotype (p-p) graphs: a direct graph that utilizes only phenotype data, and an indirect graph that incorporates genotype as well as phenotype data. We introduce a novel methodology for fusing the direct and indirect p-p networks in which the genotype data is incorporated into the phenotype data in varying degrees. The hypothesis is that the heterogeneity of ASD can be distinguished by clustering the p-p graph. The obtained graphs are clustered using network-oriented clustering techniques, and results are evaluated. The most promising clusterings are subsequently analyzed for biological and domain-based relevance. Clusters obtained delineated different aspects of ASD, including differentiating ASD-specific symptoms, cognitive, adaptive, language and communication functions, and behavioral problems. Some of the important genes associated with the clusters have previous known associations to ASD. We found that clusters based on integrated genetic and phenotype data were more effective at identifying relevant genes than clusters constructed from phenotype information alone. These genes included five with suggestive evidence of ASD association and one known to be a strong candidate.
Collapse
Affiliation(s)
- John Matta
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Daniel Dobrino
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Dacosta Yeboah
- Department of Computer Science, Missouri State University, Springfield, MO, United States
| | - Swade Howard
- Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Yasser EL-Manzalawy
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, United States
| | - Tayo Obafemi-Ajayi
- Engineering Program, Missouri State University, Springfield, MO, United States
| |
Collapse
|
4
|
Lee J, Ha S, Ahn J, Lee ST, Choi JR, Cheon KA. The Role of Ion Channel-Related Genes in Autism Spectrum Disorder: A Study Using Next-Generation Sequencing. Front Genet 2021; 12:595934. [PMID: 34712263 PMCID: PMC8546317 DOI: 10.3389/fgene.2021.595934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
The clinical heterogeneity of autism spectrum disorder (ASD) is closely associated with the diversity of genes related to ASD pathogenesis. With their low effect size, it has been hard to define the role of common variants of genes in ASD phenotype. In this study, we reviewed genetic results and clinical scores widely used for ASD diagnosis to investigate the role of genes in ASD phenotype considering their functions in molecular pathways. Genetic data from next-generation sequencing (NGS) were collected from 94 participants with ASD. We analyzed enrichment of cellular processes and gene ontology using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). We compared clinical characteristics according to genetic functional characteristics. We found 266 genes containing nonsense, frame shift, missense, and splice site mutations. Results from DAVID revealed significant enrichment for “ion channel” with an enrichment score of 8.84. Moreover, ASD participants carrying mutations in ion channel-related genes showed higher total IQ (p = 0.013) and lower repetitive, restricted behavior (RRB)-related scores (p = 0.003) and mannerism subscale of social responsiveness scale scores, compared to other participants. Individuals with variants in ion channel genes showed lower RRB scores, suggesting that ion channel genes might be relatively less associated with RRB pathogenesis. These results contribute to understanding of the role of common variants in ASD and could be important in the development of precision medicine of ASD.
Collapse
Affiliation(s)
- Junghan Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungji Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaeun Ahn
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Keun-Ah Cheon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Sachdev R, Field M, Baynam GS, Beilby J, Berarducci M, Berman Y, Boughtwood T, Cusack MB, Fitzgerald V, Fletcher J, Freckmann M, Grainger N, Kirk E, Lundie B, Lunke S, McGregor L, Mowat D, Parasivam G, Tyrell V, Wallis M, White SM, S L Ma A. Paediatric genomic testing: Navigating medicare rebatable genomic testing. J Paediatr Child Health 2021; 57:477-483. [PMID: 33566436 PMCID: PMC8049061 DOI: 10.1111/jpc.15382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 11/30/2022]
Abstract
Genomic testing for a genetic diagnosis is becoming standard of care for many children, especially those with a syndromal intellectual disability. While previously this type of specialised testing was performed mainly by clinical genetics teams, it is increasingly being 'mainstreamed' into standard paediatric care. With the introduction of a new Medicare rebate for genomic testing in May 2020, this type of testing is now available for paediatricians to order, in consultation with clinical genetics. Children must be aged less than 10 years with facial dysmorphism and multiple congenital abnormalities or have global developmental delay or moderate to severe intellectual disability. This rebate should increase the likelihood of a genetic diagnosis, with accompanying benefits for patient management, reproductive planning and diagnostic certainty. Similar to the introduction of chromosomal microarray into mainstream paediatrics, this genomic testing will increase the number of genetic diagnoses, however, will also yield more variants of uncertain significance, incidental findings, and negative results. This paper aims to guide paediatricians through the process of genomic testing, and represents the combined expertise of educators, clinical geneticists, paediatricians and genomic pathologists around Australia. Its purpose is to help paediatricians navigate choosing the right genomic test, consenting patients and understanding the possible outcomes of testing.
Collapse
Affiliation(s)
- Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital‐RandwickSydney Children's Hospitals NetworkSydneyNew South WalesAustralia,School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Mike Field
- Cancer GeneticsRoyal North Shore HospitalSydneyNew South WalesAustralia,GOLD ServiceHunter‐New England Health ServiceNewcastleNew South WalesAustralia
| | - Gareth S Baynam
- Department of HealthGenetic Services of Western AustraliaPerthWestern AustraliaAustralia
| | - John Beilby
- Department of Diagnostic GenomicsPathWest Laboratory MedicinePerthWestern AustraliaAustralia
| | - Maria Berarducci
- Health Education and Training Institute (HETI)NSW Health ServiceSydneyNew South WalesAustralia
| | - Yemima Berman
- Department of Clinical GeneticsRoyal North Shore HospitalSydneyNew South WalesAustralia,Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Tiffany Boughtwood
- Australian GenomicsParkvilleVictoriaAustralia,Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Marie B Cusack
- NSW Health Centre for Genetics EducationRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Vanessa Fitzgerald
- Speciality Services and Technology Evaluation Unit, Strategic Reform and Planning BranchNSW Ministry of HealthSydneyNew South WalesAustralia
| | - Jeffery Fletcher
- Department of PaediatricsThe Tweed HospitalTweed HeadsNew South WalesAustralia
| | - Mary‐Louise Freckmann
- Department of Clinical GeneticsRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Natalie Grainger
- NSW Health Centre for Genetics EducationRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Edwin Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital‐RandwickSydney Children's Hospitals NetworkSydneyNew South WalesAustralia,School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia,Randwick Genomics LaboratoryNSW Health PathologySydneyNew South WalesAustralia
| | - Ben Lundie
- Pathology QueenslandRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Sebastian Lunke
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteMelbourneVictoriaAustralia,Department of PathologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Lesley McGregor
- South Australian Clinical Genetics ServiceWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital‐RandwickSydney Children's Hospitals NetworkSydneyNew South WalesAustralia,School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Gayathri Parasivam
- NSW Health Centre for Genetics EducationRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Vanessa Tyrell
- Children's Cancer Institute. RandwickSydneyNew South WalesAustralia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health ServiceRoyal Hobart HospitalHobartTasmaniaAustralia,School of MedicineThe University of TasmaniaHobartTasmaniaAustralia
| | - Susan M White
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteMelbourneVictoriaAustralia,Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Alan S L Ma
- Specialty of Genomic MedicineUniversity of SydneySydneyNew South WalesAustralia,Department of Clinical Genetics, Children's Hospital WestmeadSydney Children's Hospitals NetworkSydneyNew South WalesAustralia
| |
Collapse
|
6
|
Sener EF, Onal MG, Dal F, Nalbantoglu U, Ozkul Y, Canatan H, Oztop DB. Novel alterations of CC2D1A as a candidate gene in a Turkish sample of patients with autism spectrum disorder. Int J Neurosci 2020; 132:1072-1079. [PMID: 33287601 DOI: 10.1080/00207454.2020.1860968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with large genetic background, but identification of pathogenic variants has proceeded slowly because hundreds of loci are involved in this complex disorder. CC2D1A gene firstly associated with the intellectual disability (ID) in a family with a large deletion. We aimed to contribute to the literature by sequencing this gene and by this way we report novel CC2D1A variations in patients with ASD. METHODS Forty families who have a child with a diagnosis of ASD were enrolled to the study. DNA samples were obtained from each family member. Bidirectional CC2D1A gene sequencing was performed with CEQ Cycle Sequencing Kit, and the products were analyzed on the Beckman CEQ 8000. All of the genetic analysis was conducted in Erciyes University Genome and Stem Cell Center (GENKOK). RESULTS According to the sequencing results, we defined new alterations in this gene with two SNPs in exon 15 and 19 (rs747172992 and rs1364074600) in our patients. We found a pathogenic variant in one patient. This variant was located in the acceptor region. Six of the variants were missense mutations. Additionally, six different benign variants were detected in 30 patients; however, they were not associated with ASD. Two patients carried multiple rare variants. CONCLUSION In vitro and in vivo functional analysis with this gene will help to understand its contribution to ASD pathogenesis. Future studies may help to elucidate the underlying biological mechanisms of these variants leading to the autism phenotype.
Collapse
Affiliation(s)
- Elif Funda Sener
- Medical Faculty Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Muge Gulcihan Onal
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Erciyes University Halil Bayraktar Vocational School of Health College, Kayseri, Turkey
| | - Fatma Dal
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ufuk Nalbantoglu
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Faculty of Engineering, Department of Computer Engineering, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Medical Faculty Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Halit Canatan
- Medical Faculty Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Didem Behice Oztop
- Faculty of Medicine, Department of Child Psychiatry, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Xie Q, Li Z, Wang Y, Zaidi S, Baranova A, Zhang F, Cao H. Preeclampsia Drives Molecular Networks to Shift Toward Greater Vulnerability to the Development of Autism Spectrum Disorder. Front Neurol 2020; 11:590. [PMID: 32760337 PMCID: PMC7373751 DOI: 10.3389/fneur.2020.00590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/22/2020] [Indexed: 02/05/2023] Open
Abstract
Preeclampsia (PE) confers a significant risk for subsequent diagnosis with autism spectrum disorder (ASD), with the mechanisms underlying this observation being largely unknown. To identify molecular networks affected by both PE and ASD, we conducted a large-scale literature data mining and a gene set enrichment analysis (GSEA), followed by an expression mega-analysis in 13 independently profiled ASD datasets. Sets of genes implicated in ASD and in PE significantly overlap (156 common genes; p = 3.14E−67), with many biological pathways shared (94 pathways; p < 1.00E−21). A set of PE-driven molecular triggers possibly contributing to worsening the risk of subsequent ASD was identified, possibly representing a regulatory shift toward greater vulnerability to the development of ASD. Mega-analysis of expression highlighted RPS4Y1, an inhibitor of STAT3 that is expressed in a sexually dimorphic manner, as a contributor to both PE and ASD, which should be evaluated as a possible contributor to male predominance in ASD. A set of PE-driven molecular triggers may shift the developing brain toward a greater risk of ASD. One of these triggers, chromosome Y encoded gene RPS4Y1, an inhibitor of STAT3 signaling, warrants evaluation as a possible contributor to male predominance in ASD.
Collapse
Affiliation(s)
- Qinglian Xie
- Department of Outpatient, West China Hospital of Sichuan University, Chengdu, China
| | - Zhe Li
- Mental Health Center and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Outpatient, West China Hospital of Sichuan University, Chengdu, China
| | - Shan Zaidi
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Centre for Medical Genetics, Moscow, Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Lee J, Ha S, Lee ST, Park SG, Shin S, Choi JR, Cheon KA. Next-Generation Sequencing in Korean Children With Autism Spectrum Disorder and Comorbid Epilepsy. Front Pharmacol 2020; 11:585. [PMID: 32477112 PMCID: PMC7240034 DOI: 10.3389/fphar.2020.00585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and restricted and repetitive behaviors and interests. Identifying the genetic background may be one of the key features for the future diagnosis and treatment of ASD. With the tremendous development in genetic diagnosis techniques, next-generation sequencing (NGS) can be used to analyze multiple genes simultaneously with a single test in laboratory and clinical settings and is well suited for investigating autism genetics. According to previous studies, there are two types of genetic variants in ASD, rare variants and common variants, and both are important in explaining pathogenesis. In this study, NGS data from 137 participants with ASD were reviewed retrospectively with consideration for comorbid epilepsy. Diagnostic yield was 17.51% (24/137), and pathogenic/likely pathogenic variants were seen more frequently in female participants. Fourteen participants were diagnosed with comorbid epilepsy, six of them had pathogenic/likely pathogenic variants (43%). Genes with variants of unknown significance (VOUS) which have one or more evidence of pathogenicity following the American College of Medical Genetics (ACMG) criteria were also reviewed in both ASD and ASD with comorbid epilepsy groups. We found that most frequently found VOUS genes have previously been reported as genes related to ASD or other developmental disorders. These results suggest that when interpreting the NGS results in the clinical setting, careful observation of VOUS with some pathological evidence might contribute to the discovery of genetic pathogenesis of neurodevelopmental disorders such as ASD and epilepsy.
Collapse
Affiliation(s)
- Junghan Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungji Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Gyun Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Keun-Ah Cheon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Severance Hospital, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Malaguarnera M, Cauli O. Effects of l-Carnitine in Patients with Autism Spectrum Disorders: Review of Clinical Studies. Molecules 2019; 24:molecules24234262. [PMID: 31766743 PMCID: PMC6930613 DOI: 10.3390/molecules24234262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022] Open
Abstract
Carnitine is an amino acid derivative, which plays several important roles in human physiology, in the central nervous system, and for mitochondrial metabolism, in particular. Altered carnitine metabolic routes have been associated with a subgroup of patients with autism spectrum disorders (ASD) and could add to the pathophysiology associated with these disorders. We review the current evidence about the clinical effects of carnitine administration in ASD in both non-syndromic forms and ASD associated with genetic disorders. Two randomized clinical trials and one open-label prospective trial suggest that carnitine administration could be useful for treating symptoms in non-syndromic ASD. The effect of carnitine administration in ASD associated with genetic disorders is not conclusive because of a lack of clinical trials and objectives in ASD evaluation, but beneficial effects have also been reported for other comorbid disorders, such as intellectual disability and muscular strength. Side effects observed with a dose of 200 mg/kg/day consisted of gastro-intestinal symptoms and a strong, heavy skin odor. Doses of about 50–100 mg/kg/day are generally well tolerated. Further clinical trials with the identification of the subgroup of ASD patients that would benefit from carnitine administration are warranted.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Research Center “The Great Senescence”, University of Catania, 95100 Catania, Italy;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|