1
|
Zang X, Zhang J, Hu J, Mo X, Zheng T, Ji J, Xing J, Chen C, Zhou S. Electroconvulsive therapy combined with esketamine improved depression through PI3K/AKT/GLT-1 pathway. J Affect Disord 2025; 368:282-294. [PMID: 39265873 DOI: 10.1016/j.jad.2024.08.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Neuron excitotoxic damage induced by extracellular glutamate accumulation pathologically is one of the main mechanisms of depression. Glutamate transporter-1 (GLT-1) expressed in astrocyte is responsible for glutamate clearance to maintain glutamate balance. Electroconvulsive therapy (ECT) is prevalently recommended for severe depression due to its significant anti-depressant effect. Esketamine could offer advantages of rapid anti-depressant effect and neuron protection. The aim of this study is to investigate the anti-depressant efficacy of esketamine plus ECT, and further to explore the mechanism. Firstly, total 12 patients were randomized into anesthesia with propofol (P) or propofol+esketamine (PK) before ECT. 24-Hamilton Depression Scale (HAMD) was used to evaluate the severity of depression after each ECT. Then, depressive rat model was built using chronic unpredictable mild stress method, and subsequently received infusion of esketamine (5 mg/kg) or saline before ECT treatment (0.5 mA; 100 V) for consecutive 10 days. Tests including sucrose preference test, open field test and forced swimming test were used to evaluate depression-like behaviors. In next experiments, rats were injected with RIL, DHK or LY294002 intracerebroventricularly for continuous 10 days before individual treatment. After the fifth and sixth ECT, PK group displayed lower HAMD score compared to P group. In rat model, we found that esketamine plus ECT could significantly improve depression-like behaviors and decrease glutamate level. Esketamine and ECT could both activate PI3K/Akt/GLT-1 pathway. The GLT-1 agonist RIL made equivalent effect as esketamine plus ECT. Furthermore, after using PI3K/Akt inhibitor LY294002 and GLT-1 inhibitor DHK, esketamine plus ECT could neither improve depression-like symptoms, nor upregulate GLT-1 level. Our present study suggested that esketamine plus ECT could dramatically improve depression symptom. The activation of PI3K/Akt/GLT-1 pathway may be the potential mechanism.
Collapse
Affiliation(s)
- Xiangyang Zang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jingting Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jingping Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Xingying Mo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Tingwei Zheng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jiaming Ji
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jibin Xing
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
2
|
Lopes TS, Santana JE, Silva WS, Fraga FJ, Montoya P, Sá KN, Lopes LC, Lucena R, Zana Y, Baptista AF. Increased Delta and Theta Power Density in Sickle Cell Disease Individuals with Chronic Pain Secondary to Hip Osteonecrosis: A Resting-State Eeg Study. Brain Topogr 2024; 37:859-873. [PMID: 38060074 DOI: 10.1007/s10548-023-01027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Identify the presence of a dysfunctional electroencephalographic (EEG) pattern in individuals with sickle cell disease (SCD) and hip osteonecrosis, and assess its potential associations with depression, anxiety, pain severity, and serum levels of brain-derived neurotrophic factor (BDNF). METHODS In this cross-sectional investigation, 24 SCD patients with hip osteonecrosis and chronic pain were matched by age and sex with 19 healthy controls. Resting-state EEG data were recorded using 32 electrodes for both groups. Power spectral density (PSD) and peak alpha frequency (PAF) were computed for each electrode across Delta, Theta, Alpha, and Beta frequency bands. Current Source Density (CSD) measures were performed utilizing the built-in Statistical nonparametric Mapping Method of the LORETA-KEY software. RESULTS Our findings demonstrated that SCD individuals exhibited higher PSD in delta and theta frequency bands when compared to healthy controls. Moreover, SCD individuals displayed increased CSD in delta and theta frequencies, coupled with decreased CSD in the alpha frequency within brain regions linked to pain processing, motor function, emotion, and attention. In comparison to the control group, depression symptoms, and pain intensity during hip abduction were positively correlated with PSD and CSD in the delta frequency within the parietal region. Depression symptoms also exhibited a positive association with PSD and CSD in the theta frequency within the same region, while serum BDNF levels showed a negative correlation with CSD in the alpha frequency within the left insula. CONCLUSION This study indicates that individuals with SCD experiencing hip osteonecrosis and chronic pain manifest a dysfunctional EEG pattern characterized by the persistence of low-frequency PSD during a resting state. This dysfunctional EEG pattern may be linked to clinical and biochemical outcomes, including depression symptoms, pain severity during movement, and serum BDNF levels.
Collapse
Affiliation(s)
- Tiago S Lopes
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil.
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil.
- Bahia Adventist College, Cachoeira, Brazil.
| | - Jamille E Santana
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
| | | | - Francisco J Fraga
- Engineering, Modelling, and Applied Social Sciences Center, Federal University of ABC, Santo André, SP, Brazil
| | - Pedro Montoya
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- Research Institute of Health Sciences, University of Balearic Islands, Palma de Mallorca, Spain
| | - Katia N Sá
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
- Postgraduate and Research, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | - Larissa C Lopes
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil
| | - Rita Lucena
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
| | - Abrahão F Baptista
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
- Laboratory of Medical Investigations 54, Clinics Hospital, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
3
|
Xie YH, Zhang YM, Fan FF, Song XY, Liu L. Functional role of frontal electroencephalogram alpha asymmetry in the resting state in patients with depression: A review. World J Clin Cases 2023; 11:1903-1917. [PMID: 36998965 PMCID: PMC10044961 DOI: 10.12998/wjcc.v11.i9.1903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Depression is a psychological disorder that affects the general public worldwide. It is particularly important to make an objective and accurate diagnosis of depression, and the measurement methods of brain activity have gradually received increasing attention. Resting electroencephalogram (EEG) alpha asymmetry in patients with depression shows changes in activation of the alpha frequency band of the left and right frontal cortices. In this paper, we review the findings of the relationship between frontal EEG alpha asymmetry in the resting state and depression. Based on worldwide studies, we found the following: (1) Compared with individuals without depression, those with depression showed greater right frontal EEG alpha asymmetry in the resting state. However, the pattern of frontal EEG alpha asymmetry in the resting state in depressive individuals seemed to disappear with age; (2) Compared with individuals without maternal depression, those with maternal depression showed greater right frontal EEG alpha asymmetry in the resting state, which indicated that genetic or experience-based influences have an impact on frontal EEG alpha asymmetry at rest; and (3) Frontal EEG alpha asymmetry in the resting state was stable, and little or no change occurred after antidepressant treatment. Finally, we concluded that the contrasting results may be due to differences in methodology, clinical characteristics, and participant characteristics.
Collapse
Affiliation(s)
- Yu-Hong Xie
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Ye-Min Zhang
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Fan-Fan Fan
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Xi-Yan Song
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Lei Liu
- Psychology College of Teacher Education, Center of Group Behavior and Social Psychological Service, Ningbo University, Ningbo 315211, Zhejiang Province, China
| |
Collapse
|
4
|
Identifying novel biomarkers with TMS-EEG - Methodological possibilities and challenges. J Neurosci Methods 2022; 377:109631. [PMID: 35623474 DOI: 10.1016/j.jneumeth.2022.109631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Biomarkers are essential for understanding the underlying pathologies in brain disorders and for developing effective treatments. Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging neurophysiological tool that can be used for biomarker development. This method can identify biomarkers associated with the function and dynamics of the inhibitory and excitatory neurotransmitter systems and effective connectivity between brain areas. In this review, we outline the current state of the TMS-EEG biomarker field by summarizing the existing protocols and the possibilities and challenges associated with this methodology.
Collapse
|
5
|
Yan J, Zhang F, Le Niu, Wang X, Lu X, Ma C, Zhang C, Song J, Zhang Z. High-frequency repetitive transcranial magnetic stimulation mitigates depression-like behaviors in CUMS-induced rats via FGF2/FGFR1/p-ERK signaling pathway. Brain Res Bull 2022; 183:94-103. [PMID: 35247488 DOI: 10.1016/j.brainresbull.2022.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022]
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) is a widely used and effective biological treatment for depression. Although previous studies have shown that astrocyte function may be modified by rTMS, the specific neurobiological mechanisms underlying its antidepressant action are not clear. Substantial evidence has accumulated indicating that neurotrophin dysfunction and neuronal apoptosis play a role in the development of depression. To evaluate this hypothesis, we applied a chronical unpredictable mild stress (CUMS) protocol to induce depression-like behaviors in rats, followed by the delivery of 10-Hz rTMS for 3 weeks. Behavioral outcome measures consisted of a sucrose preference test, forced swimming test, and open field test. Histological analysis focused on apoptosis, expression of GFAP and FGF2, and FGF2 pathway-related proteins. The results showed that after rTMS treatment, the rats' sucrose preference increased, open field performance improved while the immobility time of forced swimming decreased. The behavioral changes seen in rTMS treated rats were accompanied by marked reductions in the number of TUNEL-positive neural cells and the level of expression of BAX and by an increase in Bcl2. Furthermore, the expression of GFAP and FGF2 was increased, along with activation of FGF2 downstream pathway. These results suggest that rTMS treatment can improve depression-like behavior, attenuate neural apoptosis, and reverse reduction of astrocytes in a rat model of depression. We hypothesize that the therapeutic action of rTMS in CUMS-induced rats is linked to the activation of the FGF2/FGFR1/p-ERK signaling pathway.
Collapse
Affiliation(s)
- Junni Yan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China
| | - Le Niu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China; The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Xiaonan Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Xinxin Lu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Chaoyue Ma
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China; The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Research Center for Brain Science and Brain-Inspired technology, Shanghai, China
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, Xinxiang, Henan 453002, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihui, Henan 453100, China.
| |
Collapse
|
6
|
Wang HQ, Wang ZZ, Chen NH. The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacol Res 2021; 167:105542. [PMID: 33711432 DOI: 10.1016/j.phrs.2021.105542] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Depression has become one of the most prevalent neuropsychiatric disorders characterized by anhedonia, anxiety, pessimism, or even suicidal thoughts. Receptor theory has been pointed out to explain the pathogenesis of depression, while it is still subject to debate. Additionally, gene abnormality accounts for nearly 40-50% of depression risk, which is a significant factor contributing to the onset of depression. Accordingly, studying on receptors and their gene abnormality are critical parts of the research on internal causes of depression. This review summarizes the pathogenesis of depression from six of the most related receptors and their associated genes, including N-methyl-D-aspartate receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, glucocorticoid receptor, 5-hydroxytryptamine receptor, GABAA receptor α2, and dopamine receptor; and several "non-classic" receptors, such as metabotropic glutamate receptor, opioid receptor, and insulin receptor. These receptors have received considerable critical attention and are highly implicated in the onset of depression. We begin by providing the biological mechanisms of action of these receptors on the pathogenesis of depression. Then we review the historical and social context about these receptors. Finally, we discuss the limitations of the current state of knowledge and outline insights on future research directions, aiming to provide more novel targets and theoretical basis for the early prevention, accurate diagnosis and prompt treatment of depression.
Collapse
Affiliation(s)
- Hui-Qin Wang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|