1
|
Wang T, Zeng J, Peng P, Yin Q. Social decision-making in major depressive disorder: A three-level meta-analysis. J Psychiatr Res 2024; 176:293-303. [PMID: 38905762 DOI: 10.1016/j.jpsychires.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Major Depressive Disorder (MDD) is frequently associated with social dysfunction and impaired decision-making, but its impact on social decisions remains unclear. Thus, we conducted a series of meta-analyses to examine the effects of MDD on key social decision phenomena, including trust, altruistic punishment, and cooperation. We searched Web of Science, PubMed, PsycINFO, and Embase up to December 2023, using Hedges' g to compare social decision-making between MDD patients and healthy controls (HCs). Meta-analytic results showed that MDD patients exhibited a significant reduction in trust (Hedges' g = -0.347, p < 0.001), no significant difference in altruistic punishment (Hedges' g = 0.232, p = 0.149), and an increase in cooperative behaviors (Hedges' g = 0.361, p = 0.002) compared to HCs. The moderation analysis revealed that age (p = 0.039) and region (p = 0.007) significantly moderated altruistic punishment, with older MDD patients and those from Asian and European regions having larger MDD-HC contrast than others. Regarding cooperation, moderation analysis indicated that age (p = 0.028), years of education (p = 0.054), and treatment coverage (p = 0.042) were significant moderators, indicating larger MDD-HC contrast in older, less-educated and better-treated people. These findings suggest MDD has different impacts on different social decisions, highlighting the need for fine-tuned therapeutic interventions that address these differences. The data also underscores the importance of considering demographic and treatment-related variables in managing MDD, which could inform personalized treatment strategies and improve social functionality and patient outcomes.
Collapse
Affiliation(s)
- Tao Wang
- Sino-Britain Center for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Beibei District, Chonqing City, China
| | - Jianmin Zeng
- China Ministry of Education's Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China.
| | - Peiru Peng
- Sino-Britain Center for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Beibei District, Chonqing City, China
| | - Qiao Yin
- Sino-Britain Center for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Beibei District, Chonqing City, China
| |
Collapse
|
2
|
Ye Z, Yang S, Lu L, Zong M, Fan L, Kang C. Unlocking the potential of the 3-hydroxykynurenine/kynurenic acid ratio: a promising biomarker in adolescent major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01815-x. [PMID: 38819463 DOI: 10.1007/s00406-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
Metabolites disruptions in tryptophan (TRP) and kynurenine pathway (KP) are believed to disturb neurotransmitter homeostasis and contribute to depressive symptoms. This study aims to investigate serum levels of KP metabolites in adolescent major depressive disorder (AMDD), and examine their relationship with depression severities. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze serum levels of TRP, kynurenic acid (KYNA), kynurenine (KYN), and 3-hydroxy-kynurenine (3-HK) in 143 AMDD participants and 98 healthy controls (HC). Clinical data, including Children's Depression Inventory (CDI) scores, were collected and analyzed using statistical methods, such as ANOVA, logistic regression, Receiver operating characteristic curve analysis and a significance level of p < 0.05 was used for all analyses. AMDD showed significantly decreased serum levels of KYNA (-25.5%), KYN (-14.2%), TRP (-11.0%) and the KYNA/KYN ratio (-11.9%) compared to HC (p < 0.01). Conversely, significant increases were observed in 3-HK levels (+50.4%), the 3-HK/KYNA ratio (+104.3%) and the 3-HK/KYN ratio (+93.0%) (p < 0.01). Logistic regression analysis identified increased level of 3-HK as a contributing factor to AMDD, while increased level of KYNA acted as a protective factor against AMDD. The 3-HK/KYNA ratio demonstrated an area under the curve (AUC) of 0.952. This study didn't explore AMDD's inflammatory status and its metabolites relationship explicitly. These findings indicate that metabolites of TRP and KP may play a crucial role in the pathogenesis of AMDD, emphasizing the potential of the 3-HK/KYNA ratio as a laboratory biomarker for early detection and diagnosis of AMDD.
Collapse
Affiliation(s)
- Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Shuran Yang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Liu Lu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China.
| |
Collapse
|
3
|
Metri NJ, Butt AS, Murali A, Steiner-Lim GZ, Lim CK. Normative Data on Serum and Plasma Tryptophan and Kynurenine Concentrations from 8089 Individuals Across 120 Studies: A Systematic Review and Meta-Analysis. Int J Tryptophan Res 2023; 16:11786469231211184. [PMID: 38034059 PMCID: PMC10687991 DOI: 10.1177/11786469231211184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
In this systematic review and meta-analysis, a normative dataset is generated from the published literature on the kynurenine pathway in control participants extracted from case-control and methodological validation studies. Study characteristics were mapped, and studies were evaluated in terms of analytical rigour and methodological validation. Meta-analyses of variance between types of instruments, sample matrices and metabolites were conducted. Regression analyses were applied to determine the relationship between metabolite, sample matrix, biological sex, participant age and study age. The grand mean concentrations of tryptophan in the serum and plasma were 60.52 ± 15.38 μM and 51.45 ± 10.47 μM, respectively. The grand mean concentrations of kynurenine in the serum and plasma were 1.96 ± 0.51 μM and 1.82 ± 0.54 μM, respectively. Regional differences in metabolite concentrations were observed across America, Asia, Australia, Europe and the Middle East. Of the total variance within the data, mode of detection (MOD) accounted for up to 2.96%, sample matrix up to 3.23%, and their interaction explained up to 1.53%; the latter of which was determined to be negligible. This review was intended to inform future empirical research and method development studies and successfully synthesised pilot data. The pilot data reported in this study will inform future precision medicine initiatives aimed at targeting the kynurenine pathway by improving the availability and quality of normative data.
Collapse
Affiliation(s)
- Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Ali S Butt
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Ava Murali
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Genevieve Z Steiner-Lim
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
4
|
Associations between the kynurenine pathway and the brain in patients with major depressive disorder-A systematic review of neuroimaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110675. [PMID: 36372294 DOI: 10.1016/j.pnpbp.2022.110675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Previous studies have indicated that an imbalance in the kynurenine (KYN) pathway is an important pathophysiological mechanism of depression. Several studies have reported that an imbalance in the KYN pathway and its metabolites is associated with abnormalities in cerebral structure and function in depression, but the available evidence has been inconsistent. In this review, we systematically reviewed and integrated the findings concerning the associations between the KYN pathway and the brain in patients with major depressive disorder (MDD). A total of 22 neuroimaging studies were ultimately included in the present study. The neuroimaging modalities used in the studies included structural magnetic resonance imaging (MRI), diffusion tensor imaging, functional MRI, magnetic resonance spectroscopy, arterial spin labelling and positron emission tomography. The results revealed that an imbalance in the KYN pathway was associated with structural and functional abnormalities in several brain regions in patients with MDD. The brain regions most frequently associated with an imbalance in the KYN pathway were cortical regions (i.e., anterior cingulate cortex and orbitofrontal cortex), subcortical regions (i.e., striatum, thalamus and amygdala) and white matter fibres (i.e., inner capsule and left superior longitudinal tract). Our study provides robust evidence that cerebral abnormalities associated with the KYN pathway may be the underlying pathophysiological mechanisms of MDD. Future prospective studies are needed to further elucidate the causal relationships between the imbalanced KYN pathway and cerebral abnormalities in patients with MDD.
Collapse
|
5
|
Zhang Y, Liu X, Hou Z, Yin Y, Xie C, Zhang H, Zhang H, Kong Y, Gao S, Zhang Z, Yuan Y. Global topology alteration of the brain functional network affects the 8-week antidepressant response in major depressive disorder. J Affect Disord 2021; 294:491-496. [PMID: 34330044 DOI: 10.1016/j.jad.2021.07.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Previous studies have indicated that the global topology of the brain functional network in patients with major depressive disorder (MDD) differs from that of those with normal controls (NCs). However, the relationship between an altered global topology and the response to antidepressants remains unclear. Here, we investigated whether differences in global topology affect the efficacy of antidepressants in MDD patients. METHODS 108 MDD patients and 61 NCs were recruited. A magnetic resonance imaging (MRI) scan was performed at the baseline, and the Hamilton Depression Scale-24 (HAMD-24) was assessed at baseline and after 2 and 8 weeks of antidepressant treatment. Seven global topological parameters of the brain functional network were measured and compared between groups. A correlation analysis was performed to identify the relationships between global topological parameters and antidepressant efficacy. RESULTS The brain networks of MDD patients and NCs were both small-world networks. The clustering coefficient (Cp) and local efficiency (Eloc) were significantly smaller in MDD patients compared with those in NCs. The characteristic path length (Lp) were negatively correlated with the 8-week reductive rate of HAMD-24 in the MDD group. CONCLUSION The present research found that the brain functional network of MDD patients still had a small-world organization but with a lower Cp and Eloc than the NCs. In addition, the brain network global topology might have an impact on the antidepressant response and thus had the potential to become a treatment predictor of MDD.
Collapse
Affiliation(s)
- Yanran Zhang
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, School of Medicine, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Haisan Zhang
- Department of Clinical Magnetic Resonance Imaging, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Youyong Kong
- Lab of Image Science and Technology, School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China
| | - Shuwen Gao
- Lab of Image Science and Technology, School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, School of Medicine, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Mai N, Wu Y, Zhong X, Chen B, Zhang M, Peng Q, Ning Y. Different Modular Organization Between Early Onset and Late Onset Depression: A Study Base on Granger Causality Analysis. Front Aging Neurosci 2021; 13:625175. [PMID: 33633563 PMCID: PMC7900556 DOI: 10.3389/fnagi.2021.625175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Modular organization reflects the activity patterns of our brain. Different disease states may lead to different activity patterns and clinical features. Early onset depression (EOD) and late onset depression (LOD) share the same clinical symptoms, but have different treatment strategies and prognosis. Thus, explored the modular organization of EOD and LOD might help us understand their pathogenesis. Method: The study included 82 patients with late life depression (EOD 40, LOD 42) and 90 healthy controls. We evaluated the memory, executive function and processing speed and performed resting-stage functional MRI for all participants. We constructed a functional network based on Granger causality analysis and carried out modularity, normalized mutual information (NMI), Phi coefficient, within module degree z-score, and participation coefficient analyses for all the participants. Result: The Granger function network analysis suggested that the functional modularity was different among the three groups (Pauc = 0.0300), and NMI analysis confirmed that the partition of EOD was different from that of LOD (Pauc = 0.0190). Rh.10d.ROI (polar frontal cortex) and Rh.IPS1.ROI (dorsal stream visual cortex) were shown to be the potential specific nodes in the modular assignment according to the Phi coefficient (P = 0.0002, Pfdr = 0.0744 & P = 0.0004, Pfdr = 0.0744). Conclusion: This study reveal that the functional modularity and partition were different between EOD and LOD in Granger function network. These findings support the hypothesis that different pathological changes might exist in EOD and LOD.
Collapse
Affiliation(s)
- Naikeng Mai
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, China
| | - Yujie Wu
- School of Psychology, South China Normal University, Guangdong, China
| | - Xiaomei Zhong
- Department of Geriatrics, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, China
| | - Ben Chen
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, China
| | - Min Zhang
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, China
| | - Qi Peng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, China
| | - Yuping Ning
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangdong, China.,The First School of Clinical Medicine, Southern Medical University, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangdong, China
| |
Collapse
|