1
|
Peng J, Li Q, Liu L, Gao P, Xing L, Chen L, Liu H, Liu Z. Exploring the material basis and molecular targets of Changma Xifeng tablet in treating Tourette syndrome: an integrative approach of network pharmacology and miRNA analysis. Metab Brain Dis 2024; 39:1573-1590. [PMID: 39436634 DOI: 10.1007/s11011-024-01408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 10/23/2024]
Abstract
This study was to investigate the mechanism of Changma Xifeng tablet, a traditional Chinese medicine in the treatment of Tourette syndrome. Network pharmacology was utilized to pinpoint blood-entering constituents of Changma Xifeng and explore their potential targets. Additionally, differential microRNA expression analysis was conducted to predict Tourette syndrome-associated targets, complemented by molecular docking and dynamics simulations to support the interactions of the active compounds with these targets. The study identified 98 common targets between Changma Xifeng and Tourette syndrome, which may be involved in the treatment process. A protein-protein interaction network and a drug-active ingredient-disease target network highlighted the formulation's multi-component, multi-target therapeutic approach. Eight pivotal targets-AR, GRM5, MET, RORA, HTR2A, CNR1, PDE4B, and TOP1-were identified at the intersection of microRNA and drug targets. Molecular docking revealed 12 complexes with favorable binding energies below - 7 kcal/mol, specifically: AR with Alfacalcidol, TOP1 with Albiflorin, GRM5 with Arachidic Acid, GRM5 with Palmitic Acid, AR with Arachidic Acid, AR with 2-Hydroxyoctadecanoic Acid, RORA with Pinellic Acid, RORA with Palmitic Acid, AR with Acoronene, AR with Epiacoronene, AR with 4,4'-Methylenediphenol, and HTR2A with Calycosin. Our molecular docking and molecular dynamics simulations suggest potential stable interactions between the formulation's active components and target proteins. These computational methods provide a preliminary theoretical framework that will guide our future experimental work. The study provides a scientific rationale for the use of traditional Chinese medicine in Tourette syndrome management and offers new insights for drug development.
Collapse
Affiliation(s)
- Jing Peng
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China.
| | - Qiaoling Li
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Linhui Liu
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Ping Gao
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Lipeng Xing
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Li Chen
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Hui Liu
- Department of Pharmacy, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiang'an District, Wuhan, Hubei, 430016, China
| | - Zhisheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Mei YD, Gao H, Chen WF, Zhu W, Gu C, Zhang JP, Tao JM, Hua XY. Research on the multidimensional brain remodeling mechanisms at the level of brain regions, circuits, and networks in patients with chronic lower back pain caused by lumbar disk herniation. Front Neurosci 2024; 18:1357269. [PMID: 38516315 PMCID: PMC10956359 DOI: 10.3389/fnins.2024.1357269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Chronic lower back pain (cLBP), frequently attributed to lumbar disk herniation (LDH), imposes substantial limitations on daily activities. Despite its prevalence, the neural mechanisms underlying lower back pain remain incompletely elucidated. Functional magnetic resonance imaging (fMRI) emerges as a non-invasive modality extensively employed for investigating neuroplastic changes in neuroscience. In this study, task-based and resting-state fMRI methodologies are employed to probe the central mechanisms of lower back pain. Methods The study included 71 chronic lower back pain patients (cLBP group) due to LDH and 80 age, gender, and education-matched healthy volunteers (HC group). The subjects are mainly middle-aged and elderly individuals. Visual Analog Scale (VAS), Oswestry Disability Index (ODI), and Japanese Orthopedic Association Scores (JOA) were recorded. Resting-state and task-based fMRI data were collected. Results/discussion No significant differences were observed in age, gender, and education level between the two groups. In the cLBP group during task execution, there was diffuse and reduced activation observed in the primary motor cortex and supplementary motor area. Additionally, during resting states, notable changes were detected in brain regions, particularly in the frontal lobe, primary sensory area, primary motor cortex, precuneus, and caudate nucleus, accompanied by alterations in Amplitude of Low Frequency Fluctuation, Regional Homogeneity, Degree Centrality, and functional connectivity. These findings suggest that chronic lower back pain may entail reduced excitability in sensory-motor areas during tasks and heightened activity in the sensory-motor network during resting states, along with modified functional connectivity in various brain regions.
Collapse
Affiliation(s)
- Yuan-Dong Mei
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Hang Gao
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Fei Chen
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Wei Zhu
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Chen Gu
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Ming Tao
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
4
|
Zeng Y, Shu Y, Liu X, Li P, Kong L, Li K, Xie W, Zeng L, Long T, Huang L, Li H, Peng D. Frequency-specific alterations in intrinsic low-frequency oscillations in newly diagnosed male patients with obstructive sleep apnea. Front Neurosci 2022; 16:987015. [PMID: 36248662 PMCID: PMC9561418 DOI: 10.3389/fnins.2022.987015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Previous studies found abnormal low-frequency spontaneous brain activity related to cognitive impairment in patients with obstructive sleep apnea (OSA). However, it is unclear if low-frequency spontaneous brain activity is related to specific frequency bands in OSA patients. In this study, we used the amplitude of low-frequency fluctuation (ALFF) method in patients with OSA to explore characteristics of spontaneous brain activity in the classical (0.01–0.1 Hz) and five sub-frequency bands (slow-2 to slow-6) and analyzed the relationship between spontaneous brain activity and clinical evaluation was analyzed. Patients and methods Resting-state magnetic resonance imaging data and clinical assessments were collected from 52 newly-diagnosed OSA patients and 62 healthy controls (HCs). We calculated the individual group ALFF values in the classical and five different sub-frequency bands. A two-sample t-test compared ALFF differences, and one-way analysis of variance explored interactions in frequency bands between the two groups. Results ALFF values in the OSA group were lower than those in the HC group in the bilateral precuneus/posterior cingulate cortex, bilateral angular gyrus, left inferior parietal lobule, brainstem, and right fusiform gyrus. In contrast, ALFF values in the OSA group were higher than those in the HC group in the bilateral cerebellum posterior lobe, bilateral superior frontal gyrus, bilateral middle frontal gyrus, left inferior frontal gyrus, left inferior temporal gyrus, and left fusiform gyrus. Some ALFF values in altered brain regions were associated with body mass index, apnea-hypopnea index, neck circumference, snoring history, minimum SaO2, average SaO2, arousal index, oxygen reduction index, deep sleep period naming, abstraction, and delayed recall in specific frequency bands. Conclusion Our results indicated the existence of frequency-specific differences in spontaneous brain activity in OSA patients, which were related to cognitive and other clinical symptoms. This study identified frequency-band characteristics related to brain damage, expanded the cognitive neuroimaging mechanism, and provided additional OSA neuroimaging markers.
Collapse
Affiliation(s)
- Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panmei Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linghong Kong
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Haijun Li,
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Dechang Peng,
| |
Collapse
|
5
|
Hartmann A, Atkinson-Clement C, Depienne C, Black K. Tourette syndrome research highlights from 2020. F1000Res 2022; 11:45. [PMID: 35464046 PMCID: PMC9021667 DOI: 10.12688/f1000research.75628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
We present here research from 2020 relevant to Tourette syndrome (TS). The authors briefly summarize a few reports they consider most important or interesting.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | | | - Christel Depienne
- Institute of Human Genetics,, University Hospital Essen, Essen, 45122, Germany
| | - Kevin Black
- Department of Psychiatry, Neurology, and Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
6
|
Xiang A, Chen M, Qin C, Rong J, Wang C, Shen X, Liu S. Frequency-Specific Blood Oxygen Level Dependent Oscillations Associated With Pain Relief From Ankle Acupuncture in Patients With Chronic Low Back Pain. Front Neurosci 2021; 15:786490. [PMID: 34949986 PMCID: PMC8688988 DOI: 10.3389/fnins.2021.786490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Recent advances in brain imaging have deepened our knowledge of the neural activity in distinct brain areas associated with acupuncture analgesia. However, there has not been conclusive research into the frequency-specific resting-state functional changes associated with acupuncture analgesia in patients with chronic pain. Here, we aimed to characterize changes across multiple frequencies of resting-state cortical activity associated with ankle acupuncture stimulation (AAS) in patients with chronic low back pain (CLBP) and healthy controls. Methods: Twenty seven patients with CLBP and Twenty five age- and gender-matched healthy volunteers were enrolled in the study. Participants received tactile sham acupuncture (TSA) and AAS, respectively. The whole-brain amplitude of low-frequency fluctuation (ALFF) in the range 0.01–0.25 Hz was assessed for changes associated with each intervention. Further, a visual analog scale (VAS) was used to collect subjective measures of pain intensity in patients. Linear mixed-effect modeling (LME) was used to examine the mean ALFF values of AAS and TSA between patients and healthy controls. Results: The ALFF was modulated in the default mode network (an increase in the medial prefrontal cortex, and a decrease in the cerebellum/posterior ingulate/parahippocampus, P < 0.01, corrected) in both patients and controls. Decreased ALFF in the bilateral insular was frequency-dependent. Modulations in the cerebellum and right insular were significantly correlated with VAS pain score after AAS (P < 0.01). Conclusion: Hence, frequency-specific resting-state activity in the cerebellum and insular was correlated to AAS analgesia. Our frequency-specific analysis of ALFF may provide novel insights related to pain relief from acupuncture.
Collapse
Affiliation(s)
- Anfeng Xiang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - Meiyu Chen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuan Qin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Rong
- Department of Sports Rehabilitation, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China
| | - Can Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
SONG QY, ZHOU YL, ZHOU B, CHEN XY, ZHANG RY, CHEN YJ. Study progress on the mechanism of acupuncture for primary dysmenorrhea针刺治疗原发性痛经作用机制研究进展. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2021.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Altered spontaneous neural activity in the precuneus, middle and superior frontal gyri, and hippocampus in college students with subclinical depression. BMC Psychiatry 2021; 21:280. [PMID: 34074266 PMCID: PMC8167968 DOI: 10.1186/s12888-021-03292-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subclinical depression (ScD) is a prevalent condition associated with relatively mild depressive states, and it poses a high risk of developing into major depressive disorder (MDD). However, the neural pathology of ScD is still largely unknown. Identifying the spontaneous neural activity involved in ScD may help clarify risk factors for MDD and explore treatment strategies for mild stages of depression. METHODS A total of 34 ScD subjects and 40 age-, sex-, and education-matched healthy controls were screened from 1105 college students. The amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) of resting-state fMRI were calculated to reveal neural activity. Strict statistical strategies, including Gaussian random field (GRF), false discovery rate (FDR), and permutation test (PT) with threshold-free cluster enhancement (TFCE), were conducted. Based on the altered ALFF and ReHo, resting-state functional connectivity (RSFC) was further analyzed using a seed-based approach. RESULTS The right precuneus and left middle frontal gyrus (MFG) both showed significantly increased ALFF and ReHo in ScD subjects. Moreover, the left hippocampus and superior frontal gyrus (SFG) showed decreased ALFF and increased ReHo, respectively. In addition, ScD subjects showed increased RSFC between MFG and hippocampus compared to healthy controls, and significant positive correlation was found between the Beck Depression Inventory-II (BDI-II) score and RSFC from MFG to hippocampus in ScD group. CONCLUSION Spontaneous neural activities in the right precuneus, left MFG, SFG, and hippocampus were altered in ScD subjects. Functional alterations in these dorsolateral prefrontal cortex and default mode network regions are largely related to abnormal emotional processing in ScD, and indicate strong associations with brain impairments in MDD, which provide insight into potential pathophysiology mechanisms of subclinical depression.
Collapse
|
9
|
Li H, Li L, Kong L, Li P, Zeng Y, Li K, Xie W, Shu Y, Liu X, Peng D. Frequency‑Specific Regional Homogeneity Alterations and Cognitive Function in Obstructive Sleep Apnea Before and After Short-Term Continuous Positive Airway Pressure Treatment. Nat Sci Sleep 2021; 13:2221-2238. [PMID: 34992481 PMCID: PMC8714019 DOI: 10.2147/nss.s344842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Previous studies have demonstrated abnormal local spontaneous brain activity in the conventional frequency bands (0.01-0.08 Hz) in obstructive sleep apnea (OSA). However, it is not clear whether these abnormalities are associated with the specific frequency band of low-frequency oscillations or whether it can be improved with a continuous positive airway pressure (CPAP) treatment. This study aimed to investigate the regional homogeneity (ReHo) in specific frequency at baseline (pre-CPAP) and after one month of CPAP adherence treatment (post-CPAP) in OSA patients. METHODS Twenty-one patients with moderate-to-severe OSA and 21 age- and sex-matched healthy controls (HCs) were included in the final analysis. ReHo was calculated in three different frequency bands (typical frequency band: 0.01-0.1 Hz; slow-5 band: 0.01-0.027 Hz; slow-4 band: 0.027-0.073 Hz), respectively. A partial correlational analysis was performed to assess the relationship between altered ReHo and clinical evaluation. RESULTS OSA patients revealed increased ReHo in the brainstem, bilateral inferior temporal gyrus (ITG)/fusiform, and right-cerebellum posterior lobe (CPL), and decreased ReHo in the bilateral inferior parietal lobule (IPL), right superior temporal gyrus (STG), and left precentral gyrus (PG) compared to HC groups in different frequency bands. Significantly changed ReHo in the bilateral middle temporal gyrus (MTG), PG, medial frontal gyrus (MFG), supplementary motor area (SMA), CPL, IPL, left superior frontal gyrus (SFG), ITG, MTG, and right STG were observed between post-CPAP and pre-CPAP OSA patients, which was associated with specific frequency bands. The altered ReHo in specific frequency bands was correlated with Montreal cognitive assessment score, Epworth sleepiness scale, and apnea hypopnea index in pre-CPAP OSA patients. CONCLUSION These findings indicate that OSA has frequency-related abnormalities of spontaneous neural activity before and after short-term CPAP treatment, which might contribute to a better understanding of local neural psychopathology and may serve as potential biomarkers for clinical CPAP treatment.
Collapse
Affiliation(s)
- Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China.,PET Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Lan Li
- Jiangxi Provincial Institute of Parasitic Diseases Control, Nanchang City, Jiangxi Province, People's Republic of China
| | - Linghong Kong
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Panmei Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China.,PET Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| |
Collapse
|