1
|
Tang X, Ran X, Liang Z, Zhuang H, Yan X, Feng C, Qureshi A, Gao Y, Shen L. Screening biomarkers for autism spectrum disorder using plasma proteomics combined with machine learning methods. Clin Chim Acta 2024:120018. [PMID: 39481511 DOI: 10.1016/j.cca.2024.120018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND AND AIMS Autism spectrum disorder (ASD) is a common neurodevelopmental disorder in children. Early intervention is effective. Investigation of novel blood biomarkers of ASD facilitates early detection and intervention. MATERIALS AND METHODS Sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS)-based proteomics technology and 30 DSM-V-defined ASD cases versus age- and sex-matched controls were initially evaluated, and candidate biomarkers were screened using machine learning methods. Candidate biomarkers were validated by targeted proteomics multiple reaction monitoring (MRM) analysis using an independent group of 30 ASD cases vs. controls. RESULTS Fifty-one differentially expressed proteins (DEPs) were identified by SWATH analysis. They were associated with the immune response, complements and coagulation cascade pathways, and apolipoprotein-related metabolic pathways. Machine learning analysis screened 10 proteins as biomarker combinations (TFRC, PPBP, APCS, ALDH1A1, CD5L, SPARC, FGG, SHBG, S100A9, and PF4V1). In the MRM analysis, four proteins (PPBP, APCS, FGG, and PF4V1) were significantly different between the groups, and their combination as a screening indicator showed high potential (AUC = 0.8087, 95 % confidence interval 0.6904-0.9252, p < 0.0001). CONCLUSIONS Our study provides data that suggests that a few plasma proteins have potential use in screening for ASD.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Xiaoqian Ran
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Xi Yan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen 518100, PR China
| | - Ayesha Qureshi
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, PR China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen 518100, PR China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research, Institutions, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Nautiyal H, Jaiswar A, Jha PK, Dwivedi S. Exploring key genes and pathways associated with sex differences in autism spectrum disorder: integrated bioinformatic analysis. Mamm Genome 2024; 35:280-295. [PMID: 38594551 DOI: 10.1007/s00335-024-10036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024]
Abstract
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder marked by functional abnormalities in brain that causes social and linguistic difficulties. The incidence of ASD is more prevalent in males compared to females, but the underlying mechanism, as well as molecular indications for identifying sex-specific differences in ASD symptoms remain unknown. Thus, impacting the development of personalized strategy towards pharmacotherapy of ASD. The current study employs an integrated bioinformatic approach to investigate the genes and pathways uniquely associated with sex specific differences in autistic individuals. Based on microarray dataset (GSE6575) extracted from the gene expression omnibus, the dysregulated genes between the autistic and the neurotypical individuals for both sexes were identified. Gene set enrichment analysis was performed to ascertain biological activities linked to the dysregulated genes. Protein-protein interaction network analysis was carried out to identify hub genes. The identified hub genes were examined to determine their functions and involvement in the associated pathways using Enrichr. Additionally, hub genes were validated from autism-associated databases and the potential small molecules targeting the hub genes were identified. The present study utilized whole blood transcriptomic gene expression analysis data and identified 2211 and 958 differentially expressed unique genes in males and females respectively. The functional enrichment analysis revealed that male hub genes were functionally associated with RNA polymerase II mediated transcriptional regulation whereas female hub genes were involved in intracellular signal transduction and cell migration. The top male hub genes exhibited functional enrichment in tyrosine kinase signalling pathway. The pathway enrichment analysis of male hub genes indicates the enrichment of papillomavirus infection. Female hub genes were enriched in androgen receptor signalling pathway and functionally enriched in focal adhesion specific excision repair. Identified drug like candidates targeting these genes may serve as a potential sex specific therapeutics. Wortmannin for males, 5-Fluorouracil for females had the highest scores. Targeted and sex-specific pharmacotherapies may be created for the management of ASD. The current investigation identifies sex-specific molecular signatures derived from whole blood which may serve as a potential peripheral sex-specific biomarkers for ASD. The study also uncovers the possible pharmacological interventions against the selected genes/pathway, providing support in development of therapeutic strategies to mitigate ASD. However, experimental proofs on biological systems are warranted.
Collapse
Affiliation(s)
- Himani Nautiyal
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India
| | - Akanksha Jaiswar
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shubham Dwivedi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248001, India.
| |
Collapse
|
3
|
Zhang B, Zhang X, Omorou M, Zhao K, Ruan Y, Luan H. Disco interacting protein 2 homolog A (DIP2A): A key component in the regulation of brain disorders. Biomed Pharmacother 2023; 168:115771. [PMID: 37897975 DOI: 10.1016/j.biopha.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Disco Interacting Protein 2 Homolog A (DIP2A) is expressed throughout the body and abundantly expressed in the brain tissue. It is activated by Follistatin-like 1 (FSTL1). Activated DIP2A interacts with several pathways, such as AMPK/mTOR and AKT pathways, to contribute to many biological processes, such as oxidative stress, transcriptional regulation, and apoptosis. Dysregulated DIP2A activation has been implicated in numerous processes in the brain. If the upstream pathways of DIP2A remain globally unexplored, many proteins, including cortactin, AMPK, and AKT, have been identified as its downstream targets in the literature. Recent studies have linked DIP2A to a variety of mechanisms in many types of brain disorders, suggesting that regulation of DIP2A could provide novel diagnostic and therapeutic approaches for brain disorders. In this review, we comprehensively summarized and discussed the current research on DIP2A in various brain disorders, such as stroke, autism spectrum disorders (ASD), Alzheimer's disease (AD), dyslexia, and glioma.
Collapse
Affiliation(s)
- Baoyuan Zhang
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Xuesong Zhang
- First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Moussa Omorou
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Kai Zhao
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China
| | - Yang Ruan
- The Central Hospital of Jiamusi City, Jiamusi, Heilongjiang, China.
| | - Haiyan Luan
- Department of Physiology, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China.
| |
Collapse
|
4
|
Villalonga E, Mosrin C, Normand T, Girardin C, Serrano A, Žunar B, Doudeau M, Godin F, Bénédetti H, Vallée B. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells 2023; 12:cells12050805. [PMID: 36899941 PMCID: PMC10000741 DOI: 10.3390/cells12050805] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.
Collapse
Affiliation(s)
- Elodie Villalonga
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Christine Mosrin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Michel Doudeau
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
- Correspondence: ; Tel.: +33-(0)2-38-25-76-11
| |
Collapse
|
5
|
Whole-Transcriptome Analysis of Serum L1CAM-Captured Extracellular Vesicles Reveals Neural and Glycosylation Changes in Autism Spectrum Disorder. J Mol Neurosci 2022; 72:1274-1292. [PMID: 35412111 DOI: 10.1007/s12031-022-01994-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Extracellular vesicles (EVs) are cell-derived nano-sized vesicles, carrying nucleic acids, proteins, lipids, and other bioactive substances. As reported, serum neural cell adhesion molecule L1 (L1CAM)-captured EVs (LCEVs) can provide reliable biomarkers for neurological diseases; however, little is known about the LCEVs in children with ASD. The study enrolled 100 children with ASD (2.5-6 years of age; 90 males) and 60 age-matched TD children (54 males) as control. The serum sample was collected and pooled into five ASD subgroups and three TD subgroups (n = 20). LCEVs were isolated and characterized meticulously. Whole-transcriptome of LCEVs was analyzed by lncRNA microarray and RNA-sequencing. All raw data was submitted on GEO Profiles, and GEO accession numbers is GSE186493. RNAs expressed differently in LCEVs from ASD sera vs. TD sera were screened, analyzed, and further validated. A total of 1418 mRNAs, 1745 lncRNAs, and 11 miRNAs were differentially expressed, and most of them were downregulated in ASD. Most RNAs were involved in neuron- and glycan-related networks implicated in ASD. The levels of EDNRA, SLC17A6, HTR3A, OSTC, TMEM165, PC-5p-139289_26, and hsa-miR-193a-5p were validated in at least 15 ASD and 15 TD individual serum samples, which were consistent with the results of transcriptome analysis. In conclusion, whole-transcriptome analysis of serum LCEVs reveals neural and glycosylation changes in ASD, which may help detect predictive biomarkers and molecular mechanisms of ASD, and provide reference for diagnoses and therapeutic management of the disease.
Collapse
|
6
|
Alhakbany M, Al-Ayadhi L, El-Ansary A. CTRP3 as a novel biomarker in the plasma of Saudi children with autism. PeerJ 2022; 10:e12630. [PMID: 35047232 PMCID: PMC8759357 DOI: 10.7717/peerj.12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND C1q/tumor necrosis factor-related protein-3 (CTRP3) has diverse functions: anti-inflammation, metabolic regulation, and protection against endothelial dysfunction. METHODS The plasma level of CTRP3 in autistic patients (n = 32) was compared to that in controls (n = 37) using ELISA. RESULTS CTRP3 was higher (24.7% with P < 0.05) in autistic patients than in controls. No association was observed between CTRP3 and the severity of the disorder using the Childhood Autism Rating Scale (CARS). A positive correlation between CARs and the age of patients was reported. Receiver operating characteristic (ROC) analysis demonstrated a low area under the curve (AUC) for all patients (0.636). Low AUCs were also found in the case of severe patients (0.659) compared to controls, but both values were statistically significant (P ≤ 0.05). Despite the small sample size, we are the first to find an association between CTRP3 and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Manan Alhakbany
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia,Autism Research and Treatment Center, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh, Saudi Arabia,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia,Central Laboratory, Female Center for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X, Cao X, Shen L. Oxidative Stress in Autism Spectrum Disorder-Current Progress of Mechanisms and Biomarkers. Front Psychiatry 2022; 13:813304. [PMID: 35299821 PMCID: PMC8921264 DOI: 10.3389/fpsyt.2022.813304] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. Existing data suggest that early diagnosis and intervention can improve ASD outcomes. However, the causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. More mechanisms and biomarkers of autism have been found with the development of advanced technology such as mass spectrometry. Many recent studies have found a link between ASD and elevated oxidative stress, which may play a role in its development. ASD is caused by oxidative stress in several ways, including protein post-translational changes (e.g., carbonylation), abnormal metabolism (e.g., lipid peroxidation), and toxic buildup [e.g., reactive oxygen species (ROS)]. To detect elevated oxidative stress in ASD, various biomarkers have been developed and employed. This article summarizes recent studies about the mechanisms and biomarkers of oxidative stress. Potential biomarkers identified in this study could be used for early diagnosis and evaluation of ASD intervention, as well as to inform and target ASD pharmacological or nutritional treatment interventions.
Collapse
Affiliation(s)
- Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Lim SH, Sung YJ, Jo N, Lee NY, Kim KS, Lee DY, Kim NS, Lee J, Byun JY, Shin YB, Lee JR. Nanoplasmonic immunosensor for the detection of SCG2, a candidate serum biomarker for the early diagnosis of neurodevelopmental disorder. Sci Rep 2021; 11:22764. [PMID: 34815513 PMCID: PMC8610996 DOI: 10.1038/s41598-021-02262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
The neural circuits of the infant brain are rapidly established near 6 months of age, but neurodevelopmental disorders can be diagnosed only at the age of 2-3 years using existing diagnostic methods. Early diagnosis is very important to alleviate life-long disability in patients through appropriate early intervention, and it is imperative to develop new diagnostic methods for early detection of neurodevelopmental disorders. We examined the serum level of secretogranin II (SCG2) in pediatric patients to evaluate its potential role as a biomarker for neurodevelopmental disorders. A plasmonic immunosensor performing an enzyme-linked immunosorbent assay (ELISA) on a gold nanodot array was developed to detect SCG2 in small volumes of serum. This nanoplasmonic immunosensor combined with tyramide signal amplification was highly sensitive to detect SCG2 in only 5 μL serum samples. The analysis using the nanoplasmonic immunosensor revealed higher serum SCG2 levels in pediatric patients with developmental delay than in the control group. Overexpression or knockdown of SCG2 in hippocampal neurons significantly attenuated dendritic arborization and synaptic formation. These results suggest that dysregulated SCG2 expression impairs neural development. In conclusion, we developed a highly sensitive nanoplasmonic immunosensor to detect serum SCG2, a candidate biomarker for the early diagnosis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- So-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Yun-Ju Sung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Narae Jo
- BioNano Health Guard Research Center (H-GUARD), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Na-Yoon Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.,Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Nam-Soon Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Ju-Young Byun
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| | - Yong-Beom Shin
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea. .,BioNano Health Guard Research Center (H-GUARD), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| | - Jae-Ran Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
9
|
Mahony C, O’Ryan C. Convergent Canonical Pathways in Autism Spectrum Disorder from Proteomic, Transcriptomic and DNA Methylation Data. Int J Mol Sci 2021; 22:ijms221910757. [PMID: 34639097 PMCID: PMC8509728 DOI: 10.3390/ijms221910757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with extensive genetic and aetiological heterogeneity. While the underlying molecular mechanisms involved remain unclear, significant progress has been facilitated by recent advances in high-throughput transcriptomic, epigenomic and proteomic technologies. Here, we review recently published ASD proteomic data and compare proteomic functional enrichment signatures with those of transcriptomic and epigenomic data. We identify canonical pathways that are consistently implicated in ASD molecular data and find an enrichment of pathways involved in mitochondrial metabolism and neurogenesis. We identify a subset of differentially expressed proteins that are supported by ASD transcriptomic and DNA methylation data. Furthermore, these differentially expressed proteins are enriched for disease phenotype pathways associated with ASD aetiology. These proteins converge on protein–protein interaction networks that regulate cell proliferation and differentiation, metabolism, and inflammation, which demonstrates a link between canonical pathways, biological processes and the ASD phenotype. This review highlights how proteomics can uncover potential molecular mechanisms to explain a link between mitochondrial dysfunction and neurodevelopmental pathology.
Collapse
|