1
|
Jackson ES, Goldway N, Gerlach-Houck H, Gold ND. Stutterers' experiences on classic psychedelics: A preliminary self-report study. JOURNAL OF FLUENCY DISORDERS 2024; 81:106062. [PMID: 38833909 DOI: 10.1016/j.jfludis.2024.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Stuttering poses challenges to social, occupational, and educational aspects of life. Traditional behavioral therapies can be helpful but effects are often limited. Pharmaceutical treatments have been explored but there are no FDA-approved treatments for stuttering. Interest has grown in the potential use of classic psychedelics, including psilocybin and LSD, which have shown effectiveness in treating disorders with similar symptoms (e.g., anxiety, depression, PTSD). The potential effects of psychedelics on stuttering have not been explored. We conducted a preliminary investigation of self-identified stutterers who report their experiences taking classic psychedelics on the online messaging forum, Reddit. We qualitatively analyzed 114 publicly available posts, extracting meaningful units and assigning descriptor codes inductively. We then deductively organized responses into an established framework of psychedelics which includes behavioral, emotional, cognitive, belief-based, and social effects. These effects were subsequently grouped under organizing themes (positive, negative, neutral). Descriptive statistics revealed that the majority of users (74.0%) reported positive overall short-term effects particularly related to behavioral and emotional change (e.g., reduced stuttering and anxiety), but negative (9.6%), mixed (positive and negative; 4.8%), and neutral overall experiences (11.6%) were also reported. The results support the possibility that psychedelics may impact stuttering, but caution must be applied in their interpretation given the entirely uncontrolled research setting and potential adverse health effects of psychedelics as reported elsewhere. While these results do not encourage the use of psychedelics by stutterers, they suggest that future work could examine the impact of psychedelics on stuttering under supervised and in clinically controlled settings.
Collapse
Affiliation(s)
- Eric S Jackson
- Department of Communicative Sciences and Disorders, New York University, USA.
| | - Noam Goldway
- Department of Psychology, New York University, USA
| | - Hope Gerlach-Houck
- Department of Speech, Language, and Hearing Sciences, Western Michigan University, USA
| | - Noah D Gold
- Department of Psychiatry, New York University Langone Health, USA
| |
Collapse
|
2
|
Pasculli G, Busan P, Jackson ES, Alm PA, De Gregorio D, Maguire GA, Goodwin GM, Gobbi G, Erritzoe D, Carhart-Harris RL. Psychedelics in developmental stuttering to modulate brain functioning: a new therapeutic perspective? Front Hum Neurosci 2024; 18:1402549. [PMID: 38962146 PMCID: PMC11221540 DOI: 10.3389/fnhum.2024.1402549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Developmental stuttering (DS) is a neurodevelopmental speech-motor disorder characterized by symptoms such as blocks, repetitions, and prolongations. Persistent DS often has a significant negative impact on quality of life, and interventions for it have limited efficacy. Herein, we briefly review existing research on the neurophysiological underpinnings of DS -specifically, brain metabolic and default mode/social-cognitive networks (DMN/SCN) anomalies- arguing that psychedelic compounds might be considered and investigated (e.g., in randomized clinical trials) for treatment of DS. The neural background of DS is likely to be heterogeneous, and some contribution from genetically determinants of metabolic deficiencies in the basal ganglia and speech-motor cortical regions are thought to play a role in appearance of DS symptoms, which possibly results in a cascade of events contributing to impairments in speech-motor execution. In persistent DS, the difficulties of speech are often linked to a series of associated aspects such as social anxiety and social avoidance. In this context, the SCN and DMN (also influencing a series of fronto-parietal, somato-motor, and attentional networks) may have a role in worsening dysfluencies. Interestingly, brain metabolism and SCN/DMN connectivity can be modified by psychedelics, which have been shown to improve clinical evidence of some psychiatric conditions (e.g., depression, post-traumatic stress disorder, etc.) associated with psychological constructs such as rumination and social anxiety, which also tend to be present in persistent DS. To date, while there have been no controlled trials on the effects of psychedelics in DS, anecdotal evidence suggests that these agents may have beneficial effects on stuttering and its associated characteristics. We suggest that psychedelics warrant investigation in DS.
Collapse
Affiliation(s)
- Giuseppe Pasculli
- Department of Computer, Control, and Management Engineering (DIAG), La Sapienza University, Rome, Italy
- Italian Society of Psychedelic Medicine (Società Italiana di Medicina Psichedelica–SIMePsi), Bari, Italy
| | | | - Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, NY, United States
| | - Per A. Alm
- Department of Communicative Sciences and Disorders, New York University, New York, NY, United States
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Danilo De Gregorio
- IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Gerald A. Maguire
- School of Medicine, American University of Health Sciences, Signal Hill, CA, United States
- CenExel CIT Research, Riverside, CA, United States
| | - Guy M. Goodwin
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - David Erritzoe
- Department of Medicine, Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | - Robin L. Carhart-Harris
- Department of Medicine, Centre for Psychedelic Research, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, University of California, San Francisco, CA, United States
| |
Collapse
|
3
|
Fusaroli M, Simonsen A, Borrie SA, Low DM, Parola A, Raschi E, Poluzzi E, Fusaroli R. Identifying Medications Underlying Communication Atypicalities in Psychotic and Affective Disorders: A Pharmacovigilance Study Within the FDA Adverse Event Reporting System. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:3242-3259. [PMID: 37524118 DOI: 10.1044/2023_jslhr-22-00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
PURPOSE Communication atypicalities are considered promising markers of a broad range of clinical conditions. However, little is known about the mechanisms and confounders underlying them. Medications might have a crucial, relatively unknown role both as potential confounders and offering an insight on the mechanisms at work. The integration of regulatory documents with disproportionality analyses provides a more comprehensive picture to account for in future investigations of communication-related markers. The aim of this study was to identify a list of drugs potentially associated with communicative atypicalities within psychotic and affective disorders. METHOD We developed a query using the Medical Dictionary for Regulatory Activities to search for communicative atypicalities within the FDA Adverse Event Reporting System (updated June 2021). A Bonferroni-corrected disproportionality analysis (reporting odds ratio) was separately performed on spontaneous reports involving psychotic, affective, and non-neuropsychiatric disorders, to account for the confounding role of different underlying conditions. Drug-adverse event associations not already reported in the Side Effect Resource database of labeled adverse drug reactions (unexpected) were subjected to further robustness analyses to account for expected biases. RESULTS A list of 291 expected and 91 unexpected potential confounding medications was identified, including drugs that may irritate (inhalants) or desiccate (anticholinergics) the larynx, impair speech motor control (antipsychotics), or induce nodules (acitretin) or necrosis (vascular endothelial growth factor receptor inhibitors) on vocal cords; sedatives and stimulants; neurotoxic agents (anti-infectives); and agents acting on neurotransmitter pathways (dopamine agonists). CONCLUSIONS We provide a list of medications to account for in future studies of communication-related markers in affective and psychotic disorders. The current test case illustrates rigorous procedures for digital phenotyping, and the methodological tools implemented for large-scale disproportionality analyses can be considered a road map for investigations of communication-related markers in other clinical populations. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.23721345.
Collapse
Affiliation(s)
- Michele Fusaroli
- Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Arndis Simonsen
- Psychosis Research Unit, Department of Clinical Medicine, Aarhus University, Denmark
- Interacting Minds Centre, School of Culture and Society, Aarhus University, Denmark
| | - Stephanie A Borrie
- Department of Communicative Disorders and Deaf Education, Utah State University, Logan
| | - Daniel M Low
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA
| | - Alberto Parola
- Department of Psychology, University of Turin, Italy
- Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Denmark
| | - Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Elisabetta Poluzzi
- Pharmacology Unit, Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Riccardo Fusaroli
- Interacting Minds Centre, School of Culture and Society, Aarhus University, Denmark
- Department of Linguistics, Cognitive Science and Semiotics, School of Communication and Culture, Aarhus University, Denmark
- Linguistic Data Consortium, School of Arts & Sciences, University of Pennsylvania, Philadelphia
| |
Collapse
|