1
|
Wang Y, Chen CB, Imamura T, Tapia IE, Somers VK, Zee PC, Lim DC. A novel methodology for emotion recognition through 62-lead EEG signals: multilevel heterogeneous recurrence analysis. Front Physiol 2024; 15:1425582. [PMID: 39119215 PMCID: PMC11306145 DOI: 10.3389/fphys.2024.1425582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Recognizing emotions from electroencephalography (EEG) signals is a challenging task due to the complex, nonlinear, and nonstationary characteristics of brain activity. Traditional methods often fail to capture these subtle dynamics, while deep learning approaches lack explainability. In this research, we introduce a novel three-phase methodology integrating manifold embedding, multilevel heterogeneous recurrence analysis (MHRA), and ensemble learning to address these limitations in EEG-based emotion recognition. Approach The proposed methodology was evaluated using the SJTU-SEED IV database. We first applied uniform manifold approximation and projection (UMAP) for manifold embedding of the 62-lead EEG signals into a lower-dimensional space. We then developed MHRA to characterize the complex recurrence dynamics of brain activity across multiple transition levels. Finally, we employed tree-based ensemble learning methods to classify four emotions (neutral, sad, fear, happy) based on the extracted MHRA features. Main results Our approach achieved high performance, with an accuracy of 0.7885 and an AUC of 0.7552, outperforming existing methods on the same dataset. Additionally, our methodology provided the most consistent recognition performance across different emotions. Sensitivity analysis revealed specific MHRA metrics that were strongly associated with each emotion, offering valuable insights into the underlying neural dynamics. Significance This study presents a novel framework for EEG-based emotion recognition that effectively captures the complex nonlinear and nonstationary dynamics of brain activity while maintaining explainability. The proposed methodology offers significant potential for advancing our understanding of emotional processing and developing more reliable emotion recognition systems with broad applications in healthcare and beyond.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Industrial and Systems Engineering, University of Miami, Coral Gables, FL, United States
| | - Cheng-Bang Chen
- Department of Industrial and Systems Engineering, University of Miami, Coral Gables, FL, United States
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Phialdelphia, PA, United States
- Division of Pulmonary and Sleep Medicine, Children’s Hospital of Philadelphia, Phialdelphia, PA, United States
| | - Ignacio E. Tapia
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Virend K. Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Phyllis C. Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Diane C. Lim
- Department of Medicine, Miami VA Medical Center, Miami, FL, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
2
|
Ma W, Zheng Y, Li T, Li Z, Li Y, Wang L. A comprehensive review of deep learning in EEG-based emotion recognition: classifications, trends, and practical implications. PeerJ Comput Sci 2024; 10:e2065. [PMID: 38855206 PMCID: PMC11157589 DOI: 10.7717/peerj-cs.2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/25/2024] [Indexed: 06/11/2024]
Abstract
Emotion recognition utilizing EEG signals has emerged as a pivotal component of human-computer interaction. In recent years, with the relentless advancement of deep learning techniques, using deep learning for analyzing EEG signals has assumed a prominent role in emotion recognition. Applying deep learning in the context of EEG-based emotion recognition carries profound practical implications. Although many model approaches and some review articles have scrutinized this domain, they have yet to undergo a comprehensive and precise classification and summarization process. The existing classifications are somewhat coarse, with insufficient attention given to the potential applications within this domain. Therefore, this article systematically classifies recent developments in EEG-based emotion recognition, providing researchers with a lucid understanding of this field's various trajectories and methodologies. Additionally, it elucidates why distinct directions necessitate distinct modeling approaches. In conclusion, this article synthesizes and dissects the practical significance of EEG signals in emotion recognition, emphasizing its promising avenues for future application.
Collapse
Affiliation(s)
- Weizhi Ma
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Yujia Zheng
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Tianhao Li
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Zhengping Li
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Ying Li
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Lijun Wang
- School of Information Science and Technology, North China University of Technology, Beijing, China
| |
Collapse
|
3
|
Du Y, Ding H, Wu M, Chen F, Cai Z. MES-CTNet: A Novel Capsule Transformer Network Base on a Multi-Domain Feature Map for Electroencephalogram-Based Emotion Recognition. Brain Sci 2024; 14:344. [PMID: 38671995 PMCID: PMC11048325 DOI: 10.3390/brainsci14040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Emotion recognition using the electroencephalogram (EEG) has garnered significant attention within the realm of human-computer interaction due to the wealth of genuine emotional data stored in EEG signals. However, traditional emotion recognition methods are deficient in mining the connection between multi-domain features and fitting their advantages. In this paper, we propose a novel capsule Transformer network based on a multi-domain feature for EEG-based emotion recognition, referred to as MES-CTNet. The model's core consists of a multichannel capsule neural network(CapsNet) embedded with ECA (Efficient Channel Attention) and SE (Squeeze and Excitation) blocks and a Transformer-based temporal coding layer. Firstly, a multi-domain feature map is constructed by combining the space-frequency-time characteristics of the multi-domain features as inputs to the model. Then, the local emotion features are extracted from the multi-domain feature maps by the improved CapsNet. Finally, the Transformer-based temporal coding layer is utilized to globally perceive the emotion feature information of the continuous time slices to obtain a final emotion state. The paper fully experimented on two standard datasets with different emotion labels, the DEAP and SEED datasets. On the DEAP dataset, MES-CTNet achieved an average accuracy of 98.31% in the valence dimension and 98.28% in the arousal dimension; it achieved 94.91% for the cross-session task on the SEED dataset, demonstrating superior performance compared to traditional EEG emotion recognition methods. The MES-CTNet method, utilizing a multi-domain feature map as proposed herein, offers a broader observation perspective for EEG-based emotion recognition. It significantly enhances the classification recognition rate, thereby holding considerable theoretical and practical value in the EEG emotion recognition domain.
Collapse
Affiliation(s)
- Yuxiao Du
- School of Automation, Guangdong University of Technology, Guangzhou 510006, China; (Y.D.); (H.D.); (Z.C.)
| | - Han Ding
- School of Automation, Guangdong University of Technology, Guangzhou 510006, China; (Y.D.); (H.D.); (Z.C.)
| | - Min Wu
- School of Automation, China University of Geosciences, Wuhan 430074, China;
| | - Feng Chen
- School of Automation, Guangdong University of Technology, Guangzhou 510006, China; (Y.D.); (H.D.); (Z.C.)
| | - Ziman Cai
- School of Automation, Guangdong University of Technology, Guangzhou 510006, China; (Y.D.); (H.D.); (Z.C.)
| |
Collapse
|
4
|
Wang Z, Hu C, Liu W, Zhou X, Zhao X. EEG-based high-performance depression state recognition. Front Neurosci 2024; 17:1301214. [PMID: 38371369 PMCID: PMC10871719 DOI: 10.3389/fnins.2023.1301214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/14/2023] [Indexed: 02/20/2024] Open
Abstract
Depression is a global disease that is harmful to people. Traditional identification methods based on various scales are not objective and accurate enough. Electroencephalogram (EEG) contains abundant physiological information, which makes it a new research direction to identify depression state. However, most EEG-based algorithms only extract the original EEG features and ignore the complex spatiotemporal information interactions, which will reduce performance. Thus, a more accurate and objective method for depression identification is urgently needed. In this work, we propose a novel depression identification model: W-GCN-GRU. In our proposed method, we censored six sensitive features based on Spearman's rank correlation coefficient and assigned different weight coefficients to each sensitive feature by AUC for the weighted fusion of sensitive features. In particular, we use the GCN and GRU cascade networks based on weighted sensitive features as depression recognition models. For the GCN, we creatively took the brain function network based on the correlation coefficient matrix as the adjacency matrix input and the weighted fused sensitive features were used as the node feature matrix input. Our proposed model performed well on our self-collected dataset and the MODMA datasets with a accuracy of 94.72%, outperforming other methods. Our findings showed that feature dimensionality reduction, weighted fusion, and EEG spatial information all had great effects on depression recognition.
Collapse
Affiliation(s)
- Zhuozheng Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Chenyang Hu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Wei Liu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Xiaofan Zhou
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Tao J, Dan Y, Zhou D. Local domain generalization with low-rank constraint for EEG-based emotion recognition. Front Neurosci 2023; 17:1213099. [PMID: 38027525 PMCID: PMC10662311 DOI: 10.3389/fnins.2023.1213099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
As an important branch in the field of affective computing, emotion recognition based on electroencephalography (EEG) faces a long-standing challenge due to individual diversities. To conquer this challenge, domain adaptation (DA) or domain generalization (i.e., DA without target domain in the training stage) techniques have been introduced into EEG-based emotion recognition to eliminate the distribution discrepancy between different subjects. The preceding DA or domain generalization (DG) methods mainly focus on aligning the global distribution shift between source and target domains, yet without considering the correlations between the subdomains within the source domain and the target domain of interest. Since the ignorance of the fine-grained distribution information in the source may still bind the DG expectation on EEG datasets with multimodal structures, multiple patches (or subdomains) should be reconstructed from the source domain, on which multi-classifiers could be learned collaboratively. It is expected that accurately aligning relevant subdomains by excavating multiple distribution patterns within the source domain could further boost the learning performance of DG/DA. Therefore, we propose in this work a novel DG method for EEG-based emotion recognition, i.e., Local Domain Generalization with low-rank constraint (LDG). Specifically, the source domain is firstly partitioned into multiple local domains, each of which contains only one positive sample and its positive neighbors and k2 negative neighbors. Multiple subject-invariant classifiers on different subdomains are then co-learned in a unified framework by minimizing local regression loss with low-rank regularization for considering the shared knowledge among local domains. In the inference stage, the learned local classifiers are discriminatively selected according to their importance of adaptation. Extensive experiments are conducted on two benchmark databases (DEAP and SEED) under two cross-validation evaluation protocols, i.e., cross-subject within-dataset and cross-dataset within-session. The experimental results under the 5-fold cross-validation demonstrate the superiority of the proposed method compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Jianwen Tao
- Institute of Artificial Intelligence Application, Ningbo Polytechnic, Zhejiang, China
| | - Yufang Dan
- Institute of Artificial Intelligence Application, Ningbo Polytechnic, Zhejiang, China
| | - Di Zhou
- Industrial Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou, China
| |
Collapse
|
6
|
Li JW, Lin D, Che Y, Lv JJ, Chen RJ, Wang LJ, Zeng XX, Ren JC, Zhao HM, Lu X. An innovative EEG-based emotion recognition using a single channel-specific feature from the brain rhythm code method. Front Neurosci 2023; 17:1221512. [PMID: 37547144 PMCID: PMC10397731 DOI: 10.3389/fnins.2023.1221512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Efficiently recognizing emotions is a critical pursuit in brain-computer interface (BCI), as it has many applications for intelligent healthcare services. In this work, an innovative approach inspired by the genetic code in bioinformatics, which utilizes brain rhythm code features consisting of δ, θ, α, β, or γ, is proposed for electroencephalography (EEG)-based emotion recognition. Methods These features are first extracted from the sequencing technique. After evaluating them using four conventional machine learning classifiers, an optimal channel-specific feature that produces the highest accuracy in each emotional case is identified, so emotion recognition through minimal data is realized. By doing so, the complexity of emotion recognition can be significantly reduced, making it more achievable for practical hardware setups. Results The best classification accuracies achieved for the DEAP and MAHNOB datasets range from 83-92%, and for the SEED dataset, it is 78%. The experimental results are impressive, considering the minimal data employed. Further investigation of the optimal features shows that their representative channels are primarily on the frontal region, and associated rhythmic characteristics are typical of multiple kinds. Additionally, individual differences are found, as the optimal feature varies with subjects. Discussion Compared to previous studies, this work provides insights into designing portable devices, as only one electrode is appropriate to generate satisfactory performances. Consequently, it would advance the understanding of brain rhythms, which offers an innovative solution for classifying EEG signals in diverse BCI applications, including emotion recognition.
Collapse
Affiliation(s)
- Jia Wen Li
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
- Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Putian, China
- Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan University of Science and Technology, Wuhan, China
- Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin, China
| | - Di Lin
- Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Putian, China
- New Engineering Industry College, Putian University, Putian, China
| | - Yan Che
- Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Putian, China
- New Engineering Industry College, Putian University, Putian, China
| | - Ju Jian Lv
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Rong Jun Chen
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Lei Jun Wang
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Xian Xian Zeng
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Jin Chang Ren
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
- National Subsea Centre, Robert Gordon University, Aberdeen, United Kingdom
| | - Hui Min Zhao
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Xu Lu
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
| |
Collapse
|
7
|
Gong L, Li M, Zhang T, Chen W. EEG emotion recognition using attention-based convolutional transformer neural network. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
8
|
Su J, Zhu J, Song T, Chang H. Subject-Independent EEG Emotion Recognition Based on Genetically Optimized Projection Dictionary Pair Learning. Brain Sci 2023; 13:977. [PMID: 37508909 PMCID: PMC10377713 DOI: 10.3390/brainsci13070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
One of the primary challenges in Electroencephalogram (EEG) emotion recognition lies in developing models that can effectively generalize to new unseen subjects, considering the significant variability in EEG signals across individuals. To address the issue of subject-specific features, a suitable approach is to employ projection dictionary learning, which enables the identification of emotion-relevant features across different subjects. To accomplish the objective of pattern representation and discrimination for subject-independent EEG emotion recognition, we utilized the fast and efficient projection dictionary pair learning (PDPL) technique. PDPL involves the joint use of a synthesis dictionary and an analysis dictionary to enhance the representation of features. Additionally, to optimize the parameters of PDPL, which depend on experience, we applied the genetic algorithm (GA) to obtain the optimal solution for the model. We validated the effectiveness of our algorithm using leave-one-subject-out cross validation on three EEG emotion databases: SEED, MPED, and GAMEEMO. Our approach outperformed traditional machine learning methods, achieving an average accuracy of 69.89% on the SEED database, 24.11% on the MPED database, 64.34% for the two-class GAMEEMO, and 49.01% for the four-class GAMEEMO. These results highlight the potential of subject-independent EEG emotion recognition algorithms in the development of intelligent systems capable of recognizing and responding to human emotions in real-world scenarios.
Collapse
Affiliation(s)
- Jipu Su
- School of Information Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jie Zhu
- School of Information Science and Engineering, Southeast University, Nanjing 210096, China
| | - Tiecheng Song
- School of Information Science and Engineering, Southeast University, Nanjing 210096, China
| | - Hongli Chang
- School of Information Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
9
|
Li F, Luo J, Wang L, Liu W, Sang X. GCF 2-Net: global-aware cross-modal feature fusion network for speech emotion recognition. Front Neurosci 2023; 17:1183132. [PMID: 37214410 PMCID: PMC10192703 DOI: 10.3389/fnins.2023.1183132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Emotion recognition plays an essential role in interpersonal communication. However, existing recognition systems use only features of a single modality for emotion recognition, ignoring the interaction of information from the different modalities. Therefore, in our study, we propose a global-aware Cross-modal feature Fusion Network (GCF2-Net) for recognizing emotion. We construct a residual cross-modal fusion attention module (ResCMFA) to fuse information from multiple modalities and design a global-aware module to capture global details. More specifically, we first use transfer learning to extract wav2vec 2.0 features and text features fused by the ResCMFA module. Then, cross-modal fusion features are fed into the global-aware module to capture the most essential emotional information globally. Finally, the experiment results have shown that our proposed method has significant advantages than state-of-the-art methods on the IEMOCAP and MELD datasets, respectively.
Collapse
Affiliation(s)
- Feng Li
- Department of Computer Science and Technology, Anhui University of Finance and Economics, Anhui, China
- School of Information Science and Technology, University of Science and Technology of China, Anhui, China
| | - Jiusong Luo
- Department of Computer Science and Technology, Anhui University of Finance and Economics, Anhui, China
| | - Lingling Wang
- Department of Computer Science and Technology, Anhui University of Finance and Economics, Anhui, China
| | - Wei Liu
- Department of Computer Science and Technology, Anhui University of Finance and Economics, Anhui, China
| | - Xiaoshuang Sang
- Department of Computer Science and Technology, Anhui University of Finance and Economics, Anhui, China
| |
Collapse
|
10
|
Zuo X, Zhang C, Hämäläinen T, Gao H, Fu Y, Cong F. Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1281. [PMID: 36141167 PMCID: PMC9497745 DOI: 10.3390/e24091281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Emotion recognition based on electroencephalography (EEG) has attracted high interest in fields such as health care, user experience evaluation, and human-computer interaction (HCI), as it plays an important role in human daily life. Although various approaches have been proposed to detect emotion states in previous studies, there is still a need to further study the dynamic changes of EEG in different emotions to detect emotion states accurately. Entropy-based features have been proved to be effective in mining the complexity information in EEG in many areas. However, different entropy features vary in revealing the implicit information of EEG. To improve system reliability, in this paper, we propose a framework for EEG-based cross-subject emotion recognition using fused entropy features and a Bidirectional Long Short-term Memory (BiLSTM) network. Features including approximate entropy (AE), fuzzy entropy (FE), Rényi entropy (RE), differential entropy (DE), and multi-scale entropy (MSE) are first calculated to study dynamic emotional information. Then, we train a BiLSTM classifier with the inputs of entropy features to identify different emotions. Our results show that MSE of EEG is more efficient than other single-entropy features in recognizing emotions. The performance of BiLSTM is further improved with an accuracy of 70.05% using fused entropy features compared with that of single-type feature.
Collapse
Affiliation(s)
- Xin Zuo
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Chi Zhang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian 116024, China
| | - Timo Hämäläinen
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Hanbing Gao
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Fu
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|