1
|
Romero-Miguel D, Casquero-Veiga M, Lamanna-Rama N, Torres-Sánchez S, MacDowell KS, García-Partida JA, Santa-Marta C, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. N-acetylcysteine during critical neurodevelopmental periods prevents behavioral and neurochemical deficits in the Poly I:C rat model of schizophrenia. Transl Psychiatry 2024; 14:14. [PMID: 38191622 PMCID: PMC10774365 DOI: 10.1038/s41398-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
Schizophrenia is a chronic neurodevelopmental disorder with an inflammatory/prooxidant component. N-acetylcysteine (NAC) has been evaluated in schizophrenia as an adjuvant to antipsychotics, but its role as a preventive strategy has not been sufficiently explored. We aimed to evaluate the potential of NAC administration in two-time windows before the onset of symptoms in a schizophrenia-like maternal immune stimulation (MIS) rat model. Pregnant Wistar rats were injected with Poly I:C or Saline on gestational day (GD) 15. Three different preventive approaches were evaluated: 1) NAC treatment during periadolescence in the offspring (from postnatal day [PND] 35 to 49); 2) NAC treatment during pregnancy after MIS challenge until delivery (GD15-21); and 3) NAC treatment throughout all pregnancy (GD1-21). At postnatal day (PND) 70, prepulse inhibition (PPI) and anxiety levels were evaluated. In vivo magnetic resonance (MR) imaging was acquired on PND100 to assess structural changes in gray and white matter, and brain metabolite concentrations. Additionally, inflammation and oxidative stress (IOS) markers were measured ex vivo in selected brain regions. MIS offspring showed behavioral, neuroanatomical, and biochemical alterations. Interestingly, NAC treatment during periadolescence prevented PPI deficits and partially counteracted some biochemical imbalances. Moreover, NAC treatments during pregnancy not only replicated the beneficial outcomes reported by the treatment in periadolescence, but also prevented some neuroanatomical deficits, including reductions in hippocampal and corpus callosum volumes. This study suggests that early reduction of inflammation and prooxidation could help prevent the onset of schizophrenia-like symptoms, supporting the importance of anti-IOS compounds in ameliorating this disorder.
Collapse
Grants
- MLS was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III (project number PI17/01766, and grant number BA21/00030), co-financed by the European Regional Development Fund (ERDF), “A way to make Europe”; project PID2021-128862OB-I00 funded by MCIN /AEI /10.13039/501100011033 / FEDER, UE, CIBER de Salud Mental - Instituto de Salud Carlos III (project number CB07/09/0031); Delegación del Gobierno para el Plan Nacional sobre Drogas (project number 2017/085, 2022/008917); and Fundación Alicia Koplowitz.
- DRM was supported by Consejería de Educación e investigación, Comunidad de Madrid, co-funded by the European Social Fund “Investing in your future” (grant, PEJD-2018-PRE/BMD-7899).
- MCV was supported by a predoctoral grant from Fundación Tatiana Pérez de Guzmán el Bueno.
- NLR was supported by the Instituto de investigación Sanitaria Gregorio Marañón, “Programa Intramural de Impulso a la I+D+I 2019”.
- EBD, JAG-P and ST-S work was supported by the “Fondo Europeo de Desarrollo Regional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad” (RTI2018-099778-B-I00); from the “Plan Nacional sobre Drogas, Ministerio de Sanidad, Consumo y Bienestar Social” (2019I041); from the “Ministerio de Salud-Instituto de Salud Carlos III” (PI18/01691); from the “Programa Operativo de Andalucía FEDER, Iniciativa Territorial Integrada ITI 2014-2020 Consejería Salud y Familias, Junta de Andalucía” (PI-0080-2017, PI-0009-2017), "Consejería de Salud y Familias, Junta de Andalucía" (PI-0134-2018 and PEMP-0008-2020); from the "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía" (P20_00958 and CTS-510); from the CEIMAR (CEIJ-003); from the “Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz-INiBICA” (LI19/06IN-CO22; IN-C09); from the “CIBERSAM”: CIBER-Consorcio Centro de Investigación Biomédica en Red- (CB07/09/0033), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955684.
- JCL was supported by the Ministerio de Economía y Competitividad, MINECO-EU-FEDER (SAF2016-75500-R) and Ministerio de Ciencia e Innovación (PID2019-109033RB-I00).
- MD work was supported by Ministerio de Ciencia e Innovación (MCIN) and Instituto de Salud Carlos III (PT20/00044). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).
Collapse
Affiliation(s)
- Diego Romero-Miguel
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, 28040, Madrid, Spain
- Cardiovascular Imaging and Population Studies, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - José A García-Partida
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | | | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Grupo de Fisiopatología y Farmacología del Sistema Digestivo de la Universidad Rey Juan Carlos (NeuGut), Alcorcón (Madrid), 28922, Spain.
| |
Collapse
|
2
|
Tuovinen N, Hofer A. Resting-state functional MRI in treatment-resistant schizophrenia. FRONTIERS IN NEUROIMAGING 2023; 2:1127508. [PMID: 37554635 PMCID: PMC10406237 DOI: 10.3389/fnimg.2023.1127508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Abnormalities in brain regions involved in the pathophysiology of schizophrenia (SCZ) may present insight into individual clinical symptoms. Specifically, functional connectivity irregularities may provide potential biomarkers for treatment response or treatment resistance, as such changes can occur before any structural changes are visible. We reviewed resting-state functional magnetic resonance imaging (rs-fMRI) findings from the last decade to provide an overview of the current knowledge on brain functional connectivity abnormalities and their associations to symptoms in treatment-resistant schizophrenia (TRS) and ultra-treatment-resistant schizophrenia (UTRS) and to look for support for the dysconnection hypothesis. METHODS PubMed database was searched for articles published in the last 10 years applying rs-fMRI in TRS patients, i.e., who had not responded to at least two adequate treatment trials with different antipsychotic drugs. RESULTS Eighteen articles were selected for this review involving 648 participants (TRS and control cohorts). The studies showed frontal hypoconnectivity before the initiation of treatment with CLZ or riluzole, an increase in frontal connectivity after riluzole treatment, fronto-temporal hypoconnectivity that may be specific for non-responders, widespread abnormal connectivity during mixed treatments, and ECT-induced effects on the limbic system. CONCLUSION Probably due to the heterogeneity in the patient cohorts concerning antipsychotic treatment and other clinical variables (e.g., treatment response, lifetime antipsychotic drug exposure, duration of illness, treatment adherence), widespread abnormalities in connectivity were noted. However, irregularities in frontal brain regions, especially in the prefrontal cortex, were noted which are consistent with previous SCZ literature and the dysconnectivity hypothesis. There were major limitations, as most studies did not differentiate between TRS and UTRS (i.e., CLZ-resistant schizophrenia) and investigated heterogeneous cohorts treated with mixed treatments (with or without CLZ). This is critical as in different subtypes of the disorder an interplay between dopaminergic and glutamatergic pathways involving frontal, striatal, and hippocampal brain regions in separate ways is likely. Better definitions of TRS and UTRS are necessary in future longitudinal studies to correctly differentiate brain regions underlying the pathophysiology of SCZ, which could serve as potential functional biomarkers for treatment resistance.
Collapse
Affiliation(s)
- Noora Tuovinen
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
3
|
Morphological Abnormalities in Early-Onset Schizophrenia Revealed by Structural Magnetic Resonance Imaging. BIOLOGY 2023; 12:biology12030353. [PMID: 36979045 PMCID: PMC10045839 DOI: 10.3390/biology12030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Schizophrenia is a pathological condition characterized by delusions, hallucinations, and a lack of motivation. In this study, we performed a morphological analysis of regional biomarkers in early-onset schizophrenia, including cortical thicknesses, surface areas, surface curvature, and volumes extracted from T1-weighted structural magnetic resonance imaging (MRI) and compared these findings with a large cohort of neurotypical controls. Results demonstrate statistically significant abnormal presentation of the curvature of select brain regions in early-onset schizophrenia with large effect sizes, inclusive of the pars orbitalis, pars triangularis, posterior cingulate cortex, frontal pole, orbital gyrus, lateral orbitofrontal gyrus, inferior occipital gyrus, as well as in medial occipito-temporal, lingual, and insular sulci. We also observed reduced regional volumes, surface areas, and variability of cortical thicknesses in early-onset schizophrenia relative to neurotypical controls in the lingual, transverse temporal, cuneus, and parahippocampal cortices that did not reach our stringent standard for statistical significance and should be confirmed in future studies with higher statistical power. These results imply that abnormal neurodevelopment associated with early-onset schizophrenia can be characterized with structural MRI and may reflect abnormal and possibly accelerated pruning of the cortex in schizophrenia.
Collapse
|
4
|
Kitajima K, Tamura S, Sasabayashi D, Nakajima S, Iwata Y, Ueno F, Takai Y, Takahashi J, Caravaggio F, Mar W, Torres-Carmona E, Noda Y, Gerretsen P, Luca VD, Mimura M, Hirano S, Nakao T, Onitsuka T, Remington G, Graff-Guerrero A, Hirano Y. Decreased cortical gyrification and surface area in the left medial parietal cortex in patients with treatment-resistant and ultratreatment-resistant schizophrenia. Psychiatry Clin Neurosci 2023; 77:2-11. [PMID: 36165228 PMCID: PMC10092309 DOI: 10.1111/pcn.13482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 01/06/2023]
Abstract
AIM Validating the vulnerabilities and pathologies underlying treatment-resistant schizophrenia (TRS) is an important challenge in optimizing treatment. Gyrification and surface area (SA), reflecting neurodevelopmental features, have been linked to genetic vulnerability to schizophrenia. The aim of this study was to identify gyrification and SA abnormalities specific to TRS. METHODS We analyzed 3T magnetic resonance imaging findings of 24 healthy controls (HCs), 20 responders to first-line antipsychotics (FL-Resp), and 41 patients with TRS, including 19 clozapine responders (CLZ-Resp) and 22 FL- and clozapine-resistant patients (patients with ultratreatment-resistant schizophrenia [URS]). The local gyrification index (LGI) and associated SA were analyzed across groups. Diagnostic accuracy was verified by receiver operating characteristic curve analysis. RESULTS Both CLZ-Resp and URS had lower LGI values than HCs (P = 0.041, Hedges g [gH ] = 0.75; P = 0.013, gH = 0.96) and FL-Resp (P = 0.007, gH = 1.00; P = 0.002, gH = 1.31) in the left medial parietal cortex (Lt-MPC). In addition, both CLZ-Resp and URS had lower SA in the Lt-MPC than FL-Resp (P < 0.001, gH = 1.22; P < 0.001, gH = 1.75). LGI and SA were positively correlated in non-TRS (FL-Resp) (ρ = 0.64, P = 0.008) and TRS (CLZ-Resp + URS) (ρ = 0.60, P < 0.001). The areas under the receiver operating characteristic curve for non-TRS versus TRS with LGI and SA in the Lt-MPC were 0.79 and 0.85, respectively. SA in the Lt-MPC was inversely correlated with negative symptoms (ρ = -0.40, P = 0.018) and clozapine plasma levels (ρ = -0.35, P = 0.042) in TRS. CONCLUSION LGI and SA in the Lt-MPC, a functional hub in the default-mode network, were abnormally reduced in TRS compared with non-TRS. Thus, altered LGI and SA in the Lt-MPC might be structural features associated with genetic vulnerability to TRS.
Collapse
Affiliation(s)
- Kazutoshi Kitajima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.,Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Fumihiko Ueno
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Yoshifumi Takai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Takahashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neuropsychiatry, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Wanna Mar
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Edgardo Torres-Carmona
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Yoshihiro Noda
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Vincenzo de Luca
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|