1
|
Li L, Song L, Liu Y, Ayoub M, Song Y, Shu Y, Liu X, Deng Y, Liu Y, Xia Y, Li H, Peng D. Combining static and dynamic functional connectivity analyses to identify male patients with obstructive sleep apnea and predict clinical symptoms. Sleep Med 2024; 126:136-147. [PMID: 39672093 DOI: 10.1016/j.sleep.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND PURPOSE Patients with obstructive sleep apnea (OSA) experience chronic intermittent hypoxia and sleep fragmentation, leading to brain ischemia and neurological dysfunction. Therefore, it is important to identify features that can differentiate patients with OSA from healthy controls (HC) and provide insights into the underlying brain alterations associated with OSA. This study aimed to distinguish patients with OSA from healthy individuals and predict clinical symptom alterations using cerebellum-whole-brain static and dynamic functional connectivity (sFC and dFC, respectively), with the cerebellum as the seed region. METHODS Sixty male patients with OSA and 60 male HC matched for age, education level, and sex were included. Using 27 cerebellar seeds, sliding-window analysis was performed to calculate sFC and dFC between the cerebellum and the whole brain. The sFC and dFC values were then combined and used in multiple machine-learning models to distinguish patients with OSA from HC and predict the clinical symptoms of patients with OSA. RESULTS Patients with OSA showed increased dFC between cerebellar subregions and the superior and middle temporal gyri and decreased dFC with the middle frontal gyrus. Conversely, increased sFC was observed between cerebellar subregions and the cerebellar lobule VI, cingulate gyrus, middle frontal gyrus, inferior parietal lobules, insula, and superior temporal gyrus. Combined dynamic-static FC features demonstrated superior classification performance with a support vector machine in discriminating OSA from HC. In clinical symptom prediction, FC alterations contributed up to 30.11 % to cognitive impairment, 55.96 % to excessive sleepiness, and 27.94 % to anxiety and depression. CONCLUSIONS Combining cerebrocerebellar sFC and dFC analyses enables high-precision classification and prediction of OSA. Aberrant FC patterns reflect compensatory brain reorganization and disrupted cognitive network integration, highlighting potential neuroimaging markers for OSA.
Collapse
Affiliation(s)
- Lifeng Li
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Department of Radiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hunan Province, China
| | - Liming Song
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Yuting Liu
- Department of Ophthalmology, Hunan Children's Hospital, Hunan Province, China
| | - Muhammad Ayoub
- School of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai City, China
| | - Yucheng Song
- School of Computer Science and Engineering Central South University, Hunan Province, China
| | - Yongqiang Shu
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Xiang Liu
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yingke Deng
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yumeng Liu
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yunyan Xia
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Haijun Li
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China.
| | - Dechang Peng
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China.
| |
Collapse
|
2
|
Lin J, Huang J, Wu Y, Zhou L, Qiao C, Xie J, Hu C. Exploring the neural link between childhood maltreatment and depression: a default mode network rs-fMRI study. Front Psychiatry 2024; 15:1450051. [PMID: 39345924 PMCID: PMC11427261 DOI: 10.3389/fpsyt.2024.1450051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Background Childhood maltreatment (CM) is increasingly recognized as a significant risk factor for major depressive disorder (MDD), yet the neural mechanisms underlying the connection between CM and depression are not fully understood. This study aims to deepen our understanding of this relationship through neuroimaging, exploring how CM correlates with depression. Methods The study included 56 MDD patients (33 with CM experiences and 23 without) and 23 healthy controls. Participants were assessed for depression severity, CM experiences, and underwent resting-state functional MRI scans. Independent Component Analysis was used to examine differences in functional connectivity (FC) within the Default Mode Network (DMN) among the groups. Results MDD patients with CM experiences exhibited significantly stronger functional connectivity in the left Superior Frontal Gyrus (SFG) and right Anterior Cingulate Cortex (ACC) within the DMN compared to both MDD patients without CM experiences and healthy controls. FC in these regions positively correlated with Childhood Trauma Questionnaire scores. Receiver Operating Characteristic (ROC) curve analysis underscored the diagnostic value of FC in the SFG and ACC for identifying MDD related to CM. Additionally, MDD patients with CM experiences showed markedly reduced FC in the left medial Prefrontal Cortex (mPFC) relative to MDD patients without CM experiences, correlating negatively with Childhood Trauma Questionnaire scores. Conclusion Our findings suggest that increased FC in the ACC and SFG within the DMN is associated with CM in MDD patients. This enhanced connectivity in these brain regions is key to understanding the predisposition to depression related to CM.
Collapse
Affiliation(s)
- Jian Lin
- Department of Clinical Psychiatry, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jialing Huang
- Department of Clinical Psychiatry, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yun Wu
- Department of Radiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Linqi Zhou
- School of the Fourth Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Changyuan Qiao
- School of the Fourth Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jian Xie
- Department of Clinical Psychiatry, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Changchun Hu
- Department of Clinical Psychiatry, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Gálber M, Anett Nagy S, Orsi G, Perlaki G, Simon M, Czéh B. Depressed patients with childhood maltreatment display altered intra- and inter-network resting state functional connectivity. Neuroimage Clin 2024; 43:103632. [PMID: 38889524 PMCID: PMC11231604 DOI: 10.1016/j.nicl.2024.103632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Childhood maltreatment (CM) is a major risk factor for the development of major depressive disorder (MDD). To gain more knowledge on how adverse childhood experiences influence the development of brain architecture, we studied functional connectivity (FC) alterations of neural networks of depressed patients with, or without the history of CM. METHODS Depressed patients with severe childhood maltreatment (n = 18), MDD patients without maltreatment (n = 19), and matched healthy controls (n = 20) were examined with resting state functional MRI. History of maltreatment was assessed with the 28-item Childhood Trauma Questionnaire. Intra- and inter-network FC alterations were evaluated using FMRIB Software Library and CONN toolbox. RESULTS We found numerous intra- and inter-network FC alterations between the maltreated and the non-maltreated patients. Intra-network FC differences were found in the default mode, visual and auditory networks, and cerebellum. Network modelling revealed several inter-network FC alterations connecting the default mode network with the executive control, salience and cerebellar networks. Increased inter-network FC was found in maltreated patients between the sensory-motor and visual, cerebellar, default mode and salience networks. LIMITATIONS Relatively small sample size, cross-sectional design, and retrospective self-report questionnaire to assess adverse childhood experiences. CONCLUSIONS Our findings confirm that severely maltreated depressed patients display numerous alterations of intra- and inter-network FC strengths, not only in their fronto-limbic circuits, but also in sensory-motor, visual, auditory, and cerebellar networks. These functional alterations may explain that maltreated individuals typically display altered perception and are prone to develop functional neurological symptom disorder (conversion disorder) in adulthood.
Collapse
Affiliation(s)
- Mónika Gálber
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Szilvia Anett Nagy
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary; Pécs Diagnostic Centre, Pécs, Hungary
| | - Gergely Orsi
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary; Pécs Diagnostic Centre, Pécs, Hungary; Department of Neurology, Medical School, University of Pécs, Hungary
| | - Gábor Perlaki
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary; Pécs Diagnostic Centre, Pécs, Hungary; Department of Neurology, Medical School, University of Pécs, Hungary
| | - Maria Simon
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Psychiatry and Psychotherapy, Medical School, University of Pécs, Hungary
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
4
|
Zhou Z, Gao Y, Bao W, Liang K, Cao L, Tang M, Li H, Hu X, Zhang L, Sun H, Roberts N, Gong Q, Huang X. Distinctive intrinsic functional connectivity alterations of anterior cingulate cortex subdivisions in major depressive disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105583. [PMID: 38365137 DOI: 10.1016/j.neubiorev.2024.105583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/22/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Evidence of whether the intrinsic functional connectivity of anterior cingulate cortex (ACC) and its subregions is altered in major depressive disorder (MDD) remains inconclusive. A systematic review and meta-analysis were therefore performed on the whole-brain resting-state functional connectivity (rsFC) studies using the ACC and its subregions as seed regions in MDD, in order to draw more reliable conclusions. Forty-four ACC-based rsFC studies were included, comprising 25 subgenual ACC-based studies, 11 pregenual ACC-based studies, and 17 dorsal ACC-based studies. Specific alterations of rsFC were identified for each ACC subregion in patients with MDD, with altered rsFC of subgenual ACC in emotion-related brain regions, of pregenual ACC in sensorimotor-related regions, and of dorsal ACC in cognition-related regions. Furthermore, meta-regression analysis revealed a significant negative correlation between the pgACC-caudate hypoconnectivity and percentage of female patients in the study cohort. This meta-analysis provides robust evidence of altered intrinsic functional connectivity of the ACC subregions in MDD, which may hold relevance to understanding the origin of, and treating, the emotional, sensorimotor and cognitive dysfunctions that are often observed in these patients.
Collapse
Affiliation(s)
- Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Science, Chengdu, China
| | - Neil Roberts
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Centre for Reproductive Health (CRH), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Science, Chengdu, China; The Xiaman Key Lab of psychoradiology and neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Science, Chengdu, China; The Xiaman Key Lab of psychoradiology and neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|