1
|
Ikhimiukor OO, Mingle L, Wirth SE, Mendez-Vallellanes DV, Hoyt H, Musser KA, Wolfgang WJ, Andam CP. Long-term persistence of diverse clones shapes the transmission landscape of invasive Listeria monocytogenes. Genome Med 2024; 16:109. [PMID: 39232757 PMCID: PMC11373459 DOI: 10.1186/s13073-024-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The foodborne bacterium Listeria monocytogenes (Lm) causes a range of diseases, from mild gastroenteritis to invasive infections that have high fatality rate in vulnerable individuals. Understanding the population genomic structure of invasive Lm is critical to informing public health interventions and infection control policies that will be most effective especially in local and regional communities. METHODS We sequenced the whole draft genomes of 936 Lm isolates from human clinical samples obtained in a two-decade active surveillance program across 58 counties in New York State, USA. Samples came mostly from blood and cerebrospinal fluid. We characterized the phylogenetic relationships, population structure, antimicrobial resistance genes, virulence genes, and mobile genetic elements. RESULTS The population is genetically heterogenous, consisting of lineages I-IV, 89 clonal complexes, 200 sequence types, and six known serogroups. In addition to intrinsic antimicrobial resistance genes (fosX, lin, norB, and sul), other resistance genes tetM, tetS, ermG, msrD, and mefA were sparsely distributed in the population. Within each lineage, we identified clusters of isolates with ≤ 20 single nucleotide polymorphisms in the core genome alignment. These clusters may represent isolates that share a most recent common ancestor, e.g., they are derived from the same contamination source or demonstrate evidence of transmission or outbreak. We identified 38 epidemiologically linked clusters of isolates, confirming eight previously reported disease outbreaks and the discovery of cryptic outbreaks and undetected chains of transmission, even in the rarely reported Lm lineage III (ST3171). The presence of animal-associated lineages III and IV may suggest a possible spillover of animal-restricted strains to humans. Many transmissible clones persisted over several years and traversed distant sites across the state. CONCLUSIONS Our findings revealed the bacterial determinants of invasive listeriosis, driven mainly by the diversity of locally circulating lineages, intrinsic and mobile antimicrobial resistance and virulence genes, and persistence across geographical and temporal scales. Our findings will inform public health efforts to reduce the burden of invasive listeriosis, including the design of food safety measures, source traceback, and outbreak detection.
Collapse
Affiliation(s)
| | - Lisa Mingle
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Samantha E Wirth
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | | | - Hannah Hoyt
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | | | | | - Cheryl P Andam
- University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
2
|
Guidi F, Centorotola G, Chiaverini A, Iannetti L, Schirone M, Visciano P, Cornacchia A, Scattolini S, Pomilio F, D’Alterio N, Torresi M. The Slaughterhouse as Hotspot of CC1 and CC6 Listeria monocytogenes Strains with Hypervirulent Profiles in an Integrated Poultry Chain of Italy. Microorganisms 2023; 11:1543. [PMID: 37375045 PMCID: PMC10305255 DOI: 10.3390/microorganisms11061543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In Europe, very few studies are available regarding the diversity of Listeria monocytogenes (L. monocytogenes) clonal complexes (CCs) and sequence types (ST) in poultry and on the related typing of isolates using whole genome sequencing (WGS). In this study, we used a WGS approach to type 122 L. monocytogenes strains isolated from chicken neck skin samples collected in two different slaughterhouses of an integrated Italian poultry company. The studied strains were classified into five CCs: CC1-ST1 (21.3%), CC6-ST6 (22.9%), CC9-ST9 (44.2%), CC121-ST121 (10.6%) and CC193-ST193 (0.8%). CC1 and CC6 strains presented a virulence gene profile composed of 60 virulence genes and including the Listeria Pathogenicity Island 3, aut_IVb, gltA and gltB. According to cgMLST and SNPs analysis, long-term persistent clusters belonging to CC1 and CC6 were found in one of the two slaughterhouses. The reasons mediating the persistence of these CCs (up to 20 months) remain to be elucidated, and may involve the presence and the expression of stress response and environmental adaptation genes including heavy metals resistance genes (cadAC, arsBC, CsoR-copA-copZ), multidrug efflux pumps (mrpABCEF, EmrB, mepA, bmrA, bmr3, norm), cold-shock tolerance (cspD) and biofilm-formation determinants (lmo0673, lmo2504, luxS, recO). These findings indicated a serious risk of poultry finished products contamination with hypervirulent L. monocytogenes clones and raised concern for the consumer health. In addition to the AMR genes norB, mprF, lin and fosX, ubiquitous in L. monocytogenes strains, we also identified parC for quinolones, msrA for macrolides and tetA for tetracyclines. Although the phenotypical expression of these AMR genes was not tested, none of them is known to confer resistance to the primary antibiotics used to treat listeriosis The obtained results increase the data on the L. monocytogenes clones circulating in Italy and in particular in the poultry chain.
Collapse
Affiliation(s)
- Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (M.S.); (P.V.)
| | - Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (M.S.); (P.V.)
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| |
Collapse
|
3
|
D'Onofrio F, Visciano P, Krasteva I, Torresi M, Tittarelli M, Pomilio F, Iannetti L, Di Febo T, Paparella A, Schirone M, Luciani M. Immunoproteome profiling of Listeria monocytogenes under mild acid and salt stress conditions. Proteomics 2022; 22:e2200082. [PMID: 35916071 DOI: 10.1002/pmic.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is one of the main foodborne pathogens worldwide. Although its response to stress conditions has been extensively studied, it is still present in the food processing environments and is a concern for consumers. To investigate how this microorganism adapts its proteome in mild stress conditions, a combined proteomics and bioinformatics approach was used to characterize the immunogenic protein profile of an ST7 strain that caused severe listeriosis outbreaks in central Italy. Extracted proteins were analyzed by immunoblotting using positive sera against L. monocytogenes and nLC-ESI-MS/MS, and all data were examined by five software to predict subcellular localization. Two hundred and twenty-six proteins were extracted from the bands of interest, 58 of which were classified as potential immunogenic antigens. Compared to control cells grown under optimal conditions, six proteins, some of which under-described, were expressed under mild acid and salt stress conditions and/or at 12°C. In particular, adaptation and shaping of the proteome mainly involved cell motility at 12°C without acid and salt stress, whereas the combination of the same temperature with mild acid and salt stress induced a response concerning carbohydrate metabolism, oxidative stress and DNA repair. Raw data are available via ProteomeXchange with identifier PXD033519. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| |
Collapse
|
4
|
Guidi F, Lorenzetti C, Centorotola G, Torresi M, Cammà C, Chiaverini A, Pomilio F, Blasi G. Atypical Serogroup IVb-v1 of Listeria monocytogenes Assigned to New ST2801, Widely Spread and Persistent in the Environment of a Pork-Meat Producing Plant of Central Italy. Front Microbiol 2022; 13:930895. [PMID: 35832815 PMCID: PMC9271897 DOI: 10.3389/fmicb.2022.930895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we characterized 84 Listeria monocytogenes (Lm) strains having an atypical IVb-v1 profile and isolated in a meat producing plant of Central Italy. They were assigned to the new MLST type ST2801 (CC218). The new ST was widespread in the food-producing environment where it was able to persist for over a year even after cleaning and sanitation. Cluster analysis identified three main clusters genetically close to each other (0-22 allelic differences and 0-28 SNPs) from two different cgMLST types, suggesting a common source. The coexistence of closely related clusters over time could be the result of a different evolution path starting from a common ancestor first introduced in the plant and/or the consequence of the repetitive reintroduction of closely related clones probably by raw materials. All the strains presented several determinants for heavy metals resistance, stress response, biofilm production, and multidrug efflux pumps with no significant differences among the clusters. A total of 53 strains carried pLI100 and the j1776 plasmids, while in one strain, the pLM33 was found in addition to pLI100. Only the strains carrying plasmids presented cadA and cadC for cadmium resistance and the mco gene encoding a multicopper oxidase and gerN for an additional Na+/H+-K+ antiporter. All the strains presented a virulence profile including a full-length inlA gene and the additional LIPI-3. The isolation of a new ST with a large pattern of stress-adaptation genes and able to persist is an important contribution to deepening the current knowledge on the uncommon IVb-v1 and in general on the genomic diversity of Lm.
Collapse
Affiliation(s)
- Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia, Italy
| | - Cinzia Lorenzetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia, Italy
| | - Gabriella Centorotola
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Marina Torresi
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Cesare Cammà
- Centro di Referenza Nazionale per Sequenze Genomiche di Microrganismi Patogeni, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Alexandra Chiaverini
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Francesco Pomilio
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia, Italy
| |
Collapse
|
5
|
Moura A, Lefrancq N, Wirth T, Leclercq A, Borges V, Gilpin B, Dallman TJ, Frey J, Franz E, Nielsen EM, Thomas J, Pightling A, Howden BP, Tarr CL, Gerner-Smidt P, Cauchemez S, Salje H, Brisse S, Lecuit M. Emergence and global spread of Listeria monocytogenes main clinical clonal complex. SCIENCE ADVANCES 2021; 7:eabj9805. [PMID: 34851675 PMCID: PMC8635441 DOI: 10.1126/sciadv.abj9805] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The bacterial foodborne pathogen Listeria monocytogenes clonal complex 1 (Lm-CC1) is the most prevalent clonal group associated with human listeriosis and is strongly associated with cattle and dairy products. Here, we analyze 2021 isolates collected from 40 countries, covering Lm-CC1 first isolation to present days, to define its evolutionary history and population dynamics. We show that Lm-CC1 spread worldwide from North America following the Industrial Revolution through two waves of expansion, coinciding with the transatlantic livestock trade in the second half of the 19th century and the rapid growth of cattle farming and food industrialization in the 20th century. In sharp contrast to its global spread over the past century, transmission chains are now mostly local, with limited inter- and intra-country spread. This study provides an unprecedented insight into L. monocytogenes phylogeography and population dynamics and highlights the importance of genome analyses for a better control of pathogen transmission.
Collapse
Affiliation(s)
- Alexandra Moura
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | - Noémie Lefrancq
- Institut Pasteur, Université de Paris, Mathematical Modelling of Infectious Diseases Unit, CNRS UMR 2000, Paris, France
| | - Thierry Wirth
- Institut Systématique Evolution Biodiversité (ISYEB),Museum National d’Histoire Naturelle, CNRS, Sorbonne Université, Université des Antilles, EPHE, Paris, France
- PSL University, EPHE, Paris, France
| | - Alexandre Leclercq
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | - Vítor Borges
- Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Brent Gilpin
- Christchurch Science Centre, Institute of Environmental Science and Research Limited, Christchurch, New Zealand
| | | | - Joachim Frey
- Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Juno Thomas
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Arthur Pightling
- Biostatistics and Bioinformatics, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria, Australia
| | - Cheryl L. Tarr
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Simon Cauchemez
- Institut Pasteur, Université de Paris, Mathematical Modelling of Infectious Diseases Unit, CNRS UMR 2000, Paris, France
| | - Henrik Salje
- Institut Pasteur, Université de Paris, Mathematical Modelling of Infectious Diseases Unit, CNRS UMR 2000, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France
| | | |
Collapse
|
6
|
Chiaverini A, Guidi F, Torresi M, Acciari VA, Centorotola G, Cornacchia A, Centorame P, Marfoglia C, Blasi G, Di Domenico M, Migliorati G, Roussel S, Pomilio F, Sevellec Y. Phylogenetic Analysis and Genome-Wide Association Study Applied to an Italian Listeria monocytogenes Outbreak. Front Microbiol 2021; 12:750065. [PMID: 34803971 PMCID: PMC8600327 DOI: 10.3389/fmicb.2021.750065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
From May 2015 to March 2016, a severe outbreak due to Listeria monocytogenes ST7 strain occurred in Central Italy and caused 24 confirmed clinical cases. The epidemic strain was deeply investigated using whole-genome sequencing (WGS) analysis. In the interested area, the foodborne outbreak investigation identified a meat food-producing plant contaminated by the outbreak strain, carried by pork-ready-to-eat products. In the same region, in March 2018, the epidemic strain reemerged causing one listeriosis case in a 10-month-old child. The aim of this study was to investigate the phylogeny of the epidemic and reemergent strains over time and to compare them with a closer ST7 clone, detected during the outbreak and with different pulsed-field gel electrophoresis (PFGE) profiles, in order to identify genomic features linked to the persistence and the reemergence of the outbreak. An approach combining phylogenetic analysis and genome-wide association study (GWAS) revealed that the epidemic and reemergent clones were genetically closer to the ST7 clone with different PFGE profiles and strictly associated with the pork production chain. The repeated detection of both clones was probably correlated with (i) the presence of truly persistent clones and the repeated introduction of new ones and (ii) the contribution of prophage genes in promoting the persistence of the epidemic clones. Despite that no significant genomic differences were detected between the outbreak and the reemergent strain, the two related clones detected during the outbreak can be differentiated by transcriptional factor and phage genes associated with the phage LP-114.
Collapse
Affiliation(s)
- Alexandra Chiaverini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Vicdalia Aniela Acciari
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Gabriella Centorotola
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Alessandra Cornacchia
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Patrizia Centorame
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Cristina Marfoglia
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marco Di Domenico
- National Reference Centre for Whole Genome Sequencing of Microbial Pathogens Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giacomo Migliorati
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Sophie Roussel
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| | - Francesco Pomilio
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Yann Sevellec
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| |
Collapse
|
7
|
Whole-Genome Sequencing-Based Characterization of a Listeria monocytogenes Strain from an Aborted Water Buffalo in Southern Italy. Microorganisms 2021; 9:microorganisms9091875. [PMID: 34576769 PMCID: PMC8469865 DOI: 10.3390/microorganisms9091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen causing life-threatening infections both in humans and animals. In livestock farms, it can persist for a long time and primarily causes uterine infections and encephalitis in farmed animals. Whole genome sequencing (WGS) is currently becoming the best method for molecular typing of this pathogen due to its high discriminatory power and efficiency of characterization. This study describes the WGS-based characterization of an L. monocytogenes strain from an aborted water buffalo fetus in southern Italy. The strain under study was classified as molecular serogroup IVb, phylogenetic lineage I, MLST sequence type 6, Clonal Complex 6, and cgMLST type CT3331, sublineage 6. Molecular analysis indicated the presence of 61 virulence genes and 4 antibiotic resistance genes. Phylogenetic analysis, including all the publicly available European L. monocytogenes serogroup IVb isolates, indicated that our strain clusterized with all the other CC6 strains and that different CCs were variably distributed within countries and isolation sources. This study contributes to the current understanding of the genetic diversity of L. monocytogenes from animal sources and highlights how the WGS strategy can provide insights into the pathogenic potential of this microorganism, acting as an important tool for epidemiological studies.
Collapse
|