1
|
Eissler Y, Castillo-Reyes A, Dorador C, Cornejo-D'Ottone M, Celis-Plá PSM, Aguilar P, Molina V. Virus-to-prokaryote ratio in the Salar de Huasco and different ecosystems of the Southern hemisphere and its relationship with physicochemical and biological parameters. Front Microbiol 2022; 13:938066. [PMID: 36060762 PMCID: PMC9434117 DOI: 10.3389/fmicb.2022.938066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
The virus-to-prokaryote ratio (VPR) has been used in many ecosystems to study the relationship between viruses and their hosts. While high VPR values indicate a high rate of prokaryotes' cell lysis, low values are interpreted as a decrease in or absence of viral activity. Salar de Huasco is a high-altitude wetland characterized by a rich microbial diversity associated with aquatic sites like springs, ponds, streams and a lagoon with variable physicochemical conditions. Samples from two ponds, Poza Rosada (PR) and Poza Verde (PV), were analyzed by epifluorescence microscopy to determine variability of viral and prokaryotic abundance and to calculate the VPR in a dry season. In addition, to put Salar de Huasco results into perspective, a compilation of research articles on viral and prokaryotic abundance, VPR, and metadata from various Southern hemisphere ecosystems was revised. The ecosystems were grouped into six categories: high-altitude wetlands, Pacific, Atlantic, Indian, and Southern Oceans and Antarctic lakes. Salar de Huasco ponds recorded similar VPR values (an average of 7.4 and 1.7 at PR and PV, respectively), ranging from 3.22 to 15.99 in PR. The VPR variability was associated with VA and chlorophyll a, when considering all data available for this ecosystem. In general, high-altitude wetlands recorded the highest VPR average (53.22 ± 95.09), followed by the Oceans, Southern (21.91 ± 25.72), Atlantic (19.57 ± 15.77) and Indian (13.43 ± 16.12), then Antarctic lakes (11.37 ± 15.82) and the Pacific Ocean (6.34 ± 3.79). Physicochemical variables, i.e., temperature, conductivity, nutrients (nitrate, ammonium, and phosphate) and chlorophyll a as a biological variable, were found to drive the VPR in the ecosystems analyzed. Thus, the viral activity in the Wetland followed similar trends of previous reports based on larger sets of metadata analyses. In total, this study highlights the importance of including viruses as a biological variable to study microbial temporal dynamics in wetlands considering their crucial role in the carbon budgets of these understudied ecosystems in the southern hemisphere.
Collapse
Affiliation(s)
- Yoanna Eissler
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Yoanna Eissler
| | - Alonso Castillo-Reyes
- Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Viña del Mar, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto de Antofagasta, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Marcela Cornejo-D'Ottone
- Escuela de Ciencias del Mar e Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paula S. M. Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Polette Aguilar
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Verónica Molina
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile
- Verónica Molina
| |
Collapse
|
2
|
Jia J, Gao Y, Sun K, Lu Y, Wang J, Shi K. Phytoplankton community composition, carbon sequestration, and associated regulatory mechanisms in a floodplain lake system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119411. [PMID: 35525519 DOI: 10.1016/j.envpol.2022.119411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Phytoplankton contribute approximately 50% to the global photosynthetic carbon (C) fixation. However, our understanding of the corresponding C sequestration capacity and driving mechanisms associated with each individual phytoplankton taxonomic group is limited. Particularly in the hydrologically dynamic system with highly complex surface hydrological processes (floodplain lake systems). Through investigating seasonal monitoring data in a typical floodplain lake system and estimation of primary productivity of each phytoplankton taxonomic group individually using novel equations, this study proposed a phytoplankton C fixation model. Results showed that dominant phytoplankton communities had a higher gross carbon sequestration potential (CSP) (9.50 ± 5.06 Gg C each stage) and gross primary productivity (GPP) (65.46 ± 25.32 mg C m-2 d-1), but a lower net CSP (-1.04 ± 0.79 Gg C each stage) and net primary productivity (NPP) (-5.62 ± 4.93 mg C m-3 d-1) than rare phytoplankton communities in a floodplain lake system. Phytoplanktonic GPP was high (317.94 ± 73.28 mg C m-2 d-1) during the rainy season and low (63.02 ± 9.65 mg C m-2 d-1) during the dry season. However, their NPP reached the highest during the rising-water stage and the lowest during the receding-water stage. Findings also revealed that during the rainy season, high water levels (p = 0.56**) and temperatures (p = 0.37*) as well as strong solar radiation (p = 0.36*) will increase photosynthesis and accelerate metabolism and respiration of dominant phytoplankton communities, then affect primary productivity and CSP. Additionally, water level fluctuations drive changes in nutrients (p = -0.57*) and metals (p = -0.68*) concentrations, resulting in excessive nutrients and metals slowing down phytoplankton growth and reducing GPP. Compared with the static water lake system, the floodplain lake system with a lower net CSP became a heterotrophic C source.
Collapse
Affiliation(s)
- Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Kun Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yao Lu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Kun Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|